首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E5 polypeptide of bovine papillomavirus type 1 is a small membrane-bound protein which induces the transformation of immortalized fibroblasts, apparently via the formation of a ternary complex with the platelet-derived growth factor receptor (PDGFR) and the 16-kDa V-ATPase protein. This interaction seems to be mediated, at least in part, by their respective transmembrane domains. E5 also cooperates with transfected beta PDGFR to induce interleukin-3 (IL-3)-independent growth of a mouse myeloid precursor cell line (32D) which normally lacks expression of most known tyrosine kinase growth factor receptors. Cell proliferation induced by beta PDGFR and E5 is also highly specific, since the highly conserved alpha PDGFR and other related receptors did not physically or functionally interact with E5 in these cells. In the current study, analysis of chimeric alpha and beta PDGFRs confirmed that a short region encompassing the beta PDGFR transmembrane domain was sufficient for complex formation with E5, receptor autophosphorylation, and sustained proliferation of 32D cells in the absence of IL-3. Furthermore, a deletion mutant lacking the entire extracellular domain efficiently bound E5 and induced IL-3-independent growth. These data provide direct evidence that the interaction between E5 and the beta PDGFR involves amino acids 531 to 556 of the receptor transmembrane region and that this specific interaction is critical for activation of the PDGFR signaling complex.  相似文献   

2.
Heterologous proteins expressed on the surface of cells may be useful for eliciting therapeutic responses and engineering new extracellular properties. We examined factors that control the membrane targeting of alpha-fetoprotein (AFP) and a single-chain antibody (scFv). Chimeric proteins were targeted to the plasma membrane by employing the transmembrane domain (TM) and cytosolic tail of murine CD8O (B7-1), the TM of the human platelet-derived growth factor receptor (PDGFR), the glycosylphosphatidylinositol anchor encoded by the C-terminal extension of decay-accelerating factor (DAF), and the TM of the H1 subunit of the human asialoglycoprotein receptor (ASGPR). AFP chimeric proteins containing the B7, DAF, ASGPR, or PDGFR targeting domains displayed half-lives of 12.2, 3.8, 2.4, and 1.6 h, respectively. The newly synthesized B7 chimera was rapidly transported and remained on the cell surface. Glycosylphosphatidylinositol-anchored chimeras reached the surface more slowly and significant amounts were released into the culture medium. PDGFR TM chimeras were rapidly degraded, whereas ASGPR chimeras were retained in the endoplasmic reticulum (ER). The surface expression of both AFP and scFv chimeric proteins followed the order (highest to lowest) of B7 > DAF > PDGFR. Introduction of a dimerization domain (hinge-CH(2)-CH(3) region of human IgG1) between scFv and TM dramatically reduced cleavage of the chimeric protein, increased surface expression, and produced biologically active scFv. Our results indicate that transgenes designed for the expression of active scFv on cells should incorporate a TM that does not undergo endocytosis, include an intact cytoplasmic domain, and possess a spacer to reduce cleavage and retain biological activity.  相似文献   

3.
G A Adams  J K Rose 《Cell》1985,41(3):1007-1015
The membrane-spanning domain of the vesicular stomatitis virus glycoprotein (G) contains 20 uncharged and mostly hydrophobic amino acids. We created DNAs specifying G proteins with shortened transmembrane domains, by oligonucleotide-directed mutagenesis. Expression of these DNAs showed that G proteins containing 18, 16, or 14 amino acids of the original transmembrane domain assumed a transmembrane configuration and were transported to the cell surface. G proteins containing only 12 or 8 amino acids of this domain also spanned intracellular membranes, but their transport was blocked within a Golgi-like region in the cell. A G protein completely lacking the membrane-spanning domain accumulated in the endoplasmic reticulum and was secreted slowly. These experiments indicate that the size of the transmembrane domain is critical not only for membrane anchoring, but also for normal cell surface transport.  相似文献   

4.
The insulin receptor is an integral transmembrane glycoprotein comprised of two alpha-(approximately 135 kDa) and two beta-(approximately 95 kDa) subunits, which is synthesized as a single polypeptide chain precursor (alpha beta). The primary sequence of the human insulin receptor (hIR) protein, deduced from the nucleotide sequence of cloned human placental mRNAs, predicts two large domains (929 and 403 residues) on either side of a single membrane spanning domain (23 residues); each of these major domains has a distinct function (insulin binding and protein/tyrosine kinase activity, respectively). To experimentally test this deduced topology, and to explore the potential for independent domain function by the hIR extracellular domain, we have constructed an expression plasmid encoding an hIR deletion mutant which is truncated 8 residues from the beginning of the predicted transmembrane domain (i.e., 921 residues). This domain of the hIR is in fact processed into alpha- and truncated beta-subunits and secreted with high efficiency from transfected CHO cell lines which express this mutant hIR, and the protein accumulates as an (alpha beta)2 dimer in the medium. This molecule is recognized by a battery of 13 monoclonal antibodies to epitopes on the IR extracellular domain, four of which block insulin binding and two of which require the native conformation of the IR for recognition. Further, this domain binds insulin with an apparent dissociation constant comparable to that of the wild-type hIR. However, the secreted dimer displays a linear Scatchard plot, while that of the wild-type membrane-associated hIR is curvilinear.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A mutational analysis was used to identify structural domains that are important for exocytic transport and proteolytic cleavage of the mouse mammary tumor virus (MMTV) glycoprotein, which is expressed as a multidomain polyprotein. Rat HTC hepatoma cells were transfected with the MMTV glycoprotein gene driven by the constitutive Rous sarcoma virus promoter, with mutant genes encoding a series of polypeptide truncations or with a defective MMTV provirus containing a premature termination codon in the viral glycoprotein gene. Efficient proteolytic maturation and transport of MMTV glycoproteins to the cell surface or extracellular environment required the presence of the transmembrane domain but not the cytoplasmic tail. Two stable truncations retaining the hydrophobic region of the ectodomain in the absence of the transmembrane domain and cytoplasmic tail (trgp67 and trgp58) remained in endoglycosidase H sensitive and uncleaved forms. One of these truncations, trgp58, appeared to be tightly associated with intracellular membranes and strongly bound by heavy chain binding protein, whereas the other truncation, trgp67, was a soluble component of the lumen and persists intracellularly by a heavy chain binding protein-independent pathway. The truncated MMTV glycoprotein additionally lacking the hydrophobic region of the ectodomain was efficiently secreted. Taken together, our results demonstrate that the hydrophobic transmembrane domain of the MMTV glycoprotein is required for proper transport and proteolytic processing, whereas, in the absence of the transmembrane domain, the presence of a hydrophobic region of the ectodomain correlated with retention at an early step in the exocytic pathway.  相似文献   

6.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   

7.
L G Perez  G L Davis    E Hunter 《Journal of virology》1987,61(10):2981-2988
The envelope glycoprotein complex of Rous sarcoma virus consists of a knoblike, receptor-binding gp85 polypeptide that is linked through disulfide bonds to a membrane-spanning gp37 spike. We used oligonucleotide-directed mutagenesis to assess the role of the hydrophobic transmembrane region and hydrophilic cytoplasmic domain of gp37 in intracellular transport and assembly into virions. Early termination codons were introduced on either side of the hydrophobic transmembrane region, and the mutated env genes were expressed from the late promoter of simian virus 40. This resulted in the synthesis of glycoprotein complexes composed of a normal gp85 and a truncated gp37 molecule that lacked the cytoplasmic domain alone or both the cytoplasmic and transmembrane domains. The biosynthesis and intracellular transport of the truncated proteins were not significantly different from those of the wild-type glycoproteins, suggesting that any protein signals for biosynthesis and intracellular transport of this viral glycoprotein complex must reside in its extracellular domain. The glycoprotein complex lacking the cytoplasmic domain of gp37 is stably expressed on the cell surface in a manner similar to that of the wild type. In contrast, the complex lacking both the transmembrane and cytoplasmic domains is secreted as a soluble molecule into the media. It can be concluded, therefore, that the transmembrane domain alone is essential for anchoring the RSV env complex in the cell membrane and that the cytoplasmic domain is not required for anchor function. Insertion of the mutated genes into an infectious proviral genome allowed us to assess the ability of the truncated gene products to be assembled into virions and to determine whether such virions were infectious. Viral genomes encoding the secreted glycoprotein were noninfectious, whereas those encoding a glycoprotein complex lacking only the cytoplasmic domain of gp37 were infectious. Virions produced from these mutant-infected cells contained normal levels of glycoprotein. The cytoplasmic tail of gp37 is thus not required for the assembly of envelope glycoproteins into virions. It is unlikely, therefore, that this region of gp37 interacts with viral core proteins during the selective incorporation of viral glycoproteins into the viral envelope.  相似文献   

8.
Platelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the beta(2)-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.  相似文献   

9.
The immunoglobulin (IgM) heavy chain constant region gene of the channel catfish, Ictalurus punctatus, has been cloned and characterized. The gene contains four constant region domain-encoding exons (CH1 to CH4) expressed in the secreted form of the immunoglobulin, and two exons encoding the transmembrane (TM) domain utilized in the lymphocyte membrane receptor form of the immunoglobulin. The sequence of a cDNA clone encoding the 3' region of the message for the membrane receptor form of the mu chain indicates that the TM1 exon is spliced directly to the CH3 exon, and not into a site within the CH4 exon, as occurs in the mammals, a shark and an amphibian. This unusual pattern of splicing, which produces a membrane heavy chain that is characteristically smaller than the secreted heavy chain, may be common to all teleost fish.  相似文献   

10.
11.
The MUC3 gene encodes a transmembrane mucin and is alternatively spliced.   总被引:8,自引:0,他引:8  
Epithelial mucins are a family of secreted and cell surface glycoproteins expressed by epithelial tissues and implicated in epithelial cell protection, adhesion modulation and signaling. The gene encoding human MUC3 (hMUC3), localised to chromosome 7q22, is most highly expressed in the small intestine. It has previously been reported to be a non-transmembrane mucin with minimal homology to its suggested orthologues from rat (rMuc3) and mouse (mMuc3). RT-PCR was performed to investigate the carboxyl terminus of the published sequence of hMUC3 from normal colon and small intestine tissues and also from a series of 10 colorectal cancer cell lines. Two distinct PCR products were identified. In contrast to the previously published hMUC3 sequence, which terminates shortly after a single cysteine-rich EGF-like domain, conceptual protein translation of the dominant and largest PCR product identified two extracellular cysteine-rich EGF-like domains separated by an N-glycosylation-rich domain and a potential coiled-coil region, followed by a putative transmembrane region and a 75 amino acid cytoplasmic tail. The smaller of the two PCR products was found to be an alternative splice variant of MUC3 including the first EGF-like domain but lacking part of the second EGF-like domain and the transmembrane region. Nine out of 10 colorectal cancer cell lines were found to express MUC3. Interestingly, one of the cell lines, LoVo, expressed predominantly the alternative splice form lacking a transmembrane domain. Structural homology of the new protein sequence of hMUC3 with rMuc3 and mMuc3 indicates it is closely related to the rodent proteins and is likely to be involved in ligand-binding and intracellular signaling. The new finding that MUC3 encodes a transmembrane molecule presents a new paradigm for the structure of this mucin and the manner in which it may function.  相似文献   

12.
Klotho and aging     
The klotho gene encodes a single-pass transmembrane protein that forms a complex with multiple fibroblast growth factor (FGF) receptors and functions as an obligatory co-receptor for FGF23, a bone-derived hormone that induces negative phosphate balance. Defects in either Klotho or Fgf23 gene expression cause not only phosphate retention but also a premature-aging syndrome in mice, unveiling a potential link between phosphate metabolism and aging. In addition, the extracellular domain of Klotho protein is clipped on the cell surface and secreted into blood stream, potentially functioning as an endocrine factor. The secreted Klotho protein has a putative sialidase activity that modifies glycans on the cell surface, which may explain the ability of secreted Klotho protein to regulate activity of multiple ion channels and growth factors including insulin, IGF-1, and Wnt. Secreted Klotho protein also protects cells and tissues from oxidative stress through a mechanism yet to be identified. Thus, the transmembrane and secreted forms of Klotho protein have distinct functions, which may collectively affect aging processes in mammals.  相似文献   

13.
Tractin is a novel member of the Ig-superfamily which has a highly unusual structure. It contains six Ig domains, four FNIII-like domains, an acidic domain, 12 repeats of a novel proline- and glycine-rich motif with sequence similarity to collagen, a transmembrane domain, and an intracellular tail with an ankyrin and a PDZ domain binding motif. By generating domain-specific antibodies, we show that Tractin is proteolytically processed at two cleavage sites, one located in the third FNIII domain, and a second located just proximal to the transmembrane domain resulting in the formation of four fragments. The most NH(2)-terminal fragment which is glycosylated with the Lan3-2, Lan4-2, and Laz2-369 glycoepitopes is secreted, and we present evidence which supports a model in which the remaining fragments combine to form a secreted homodimer as well as a transmembrane heterodimer. The extracellular domain of the dimers is mostly made up of the collagen-like PG/YG-repeat domain but also contains 11/2 FNIII domain and the acidic domain. The collagen-like PG/YG-repeat domain could be selectively digested by collagenase and we show by yeast two-hybrid analysis that the intracellular domain of Tractin can interact with ankyrin. Thus, the transmembrane heterodimer of Tractin constitutes a novel protein domain configuration where sequence that has properties similar to that of extracellular matrix molecules is directly linked to the cytoskeleton through interactions with ankyrin.  相似文献   

14.
Membrane type-1 matrix metalloproteinase (MT1-MMP) drives cell invasion through three-dimensional (3-D) extracellular matrix (ECM) barriers dominated by type I collagen or fibrin. Based largely on analyses of its impact on cell function under two-dimensional culture conditions, MT1-MMP is categorized as a multifunctional molecule with 1) a structurally distinct, N-terminal catalytic domain; 2) a C-terminal hemopexin domain that regulates substrate recognition as well as conformation; and 3) a type I transmembrane domain whose cytosolic tail controls protease trafficking and signaling cascades. The MT1-MMP domains that subserve cell trafficking through 3-D ECM barriers in vitro or in vivo, however, remain largely undefined. Herein, we demonstrate that collagen-invasive activity is not confined strictly to the catalytic, hemopexin, transmembrane, or cytosolic domain sequences of MT1-MMP. Indeed, even a secreted collagenase supports invasion when tethered to the cell surface in the absence of the MT1-MMP hemopexin, transmembrane, and cytosolic tail domains. By contrast, the ability of MT1-MMP to support fibrin-invasive activity diverges from collagenolytic potential, and alternatively, it requires the specific participation of MT-MMP catalytic and hemopexin domains. Hence, the tissue-invasive properties of MT1-MMP are unexpectedly embedded within distinct, but parsimonious, sequences that serve to tether the requisite matrix-degradative activity to the surface of migrating cells.  相似文献   

15.
LeechCAM is a recently described member of the Ig-superfamily which has five Ig-domains, two FNIII-domains, a transmembrane domain, and a cytoplasmic domain. Phylogenetic analysis indicated that LeechCAM is the leech homolog of apCAM, FasII, and vertebrate NCAM. Using a leechCAM-specific monoclonal antibody we show by immunoblot analysis and by Triton X-114 phase separation experiments that in addition to existing in a transmembrane version LeechCAM is likely to be proteolytically cleaved into a secreted form without the transmembrane domain and the intracellular tail. Furthermore, by immunoprecipitation we demonstrate that LeechCAM is glycosylated with the Laz2-369 glycoepitope, an epitope that has been specifically implicated in regulation of axonal outgrowth and synapse formation.  相似文献   

16.
Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.  相似文献   

17.
Here, we describe a new class of multivalent and multispecific antibody-based reagents for therapy. The molecules, termed “trimerbodies,” use a modified version of the N-terminal trimerization region of human collagen XVIII noncollagenous 1 domain flanked by two flexible linkers as trimerizing scaffold. By fusing single-chain variable fragments (scFv) with the same or different specificity to both N- and C-terminus of the trimerizing scaffold domain, we produced monospecific or bispecific hexavalent molecules that were efficiently secreted as soluble proteins by transfected mammalian cells. A bispecific anti-laminin x anti-CD3 N-/C-trimerbody was found to be trimeric in solution, very efficient at recognizing purified plastic-immobilized laminin and CD3 expressed at the surface of T cells, and remarkably stable in human serum. The bispecificity was further demonstrated in T cell activation studies. In the presence of laminin-rich substrate, the bispecific anti-laminin x anti-CD3 N-/C-trimerbody stimulated a high percentage of human T cells to express surface activation markers. These results suggest that the trimerbody platform offers promising opportunities for the development of the next-generation therapeutic antibodies, i.e., multivalent and bispecific molecules with a format optimized for the desired pharmacokinetics and adapted to the pathological context.  相似文献   

18.
Cells expressing a membrane-anchored single-chain fragment variable (scFv) domain against a tumor-specific antibody were fabricated. These cells were able to bind to cells of a human colon cancer line (BM314) expressing the erbB-2 proto-oncogene. A plasmid, pMFverbB, was first constructed in which the anti-ErbB-2 scFv gene was cloned in-frame between a signal peptide sequence and the platelet-derived growth factor receptor (PDGFR) transmembrane domain gene to express scFv on the cell surface. An African green monkey cell line, COS-1, was stably transfected with pMFverbB. Immunofluorescence assay experiments and microscopic observation showed that the cells expressing scFv bound to the human tumor cells overexpressing the ErbB-2 protein as well as to cells of a mouse fibroblast line (NIH-3T3) transfected with the erbB-2 gene. The cells expressing scFv could take up magnetite cationic liposomes as a model of particle-type drug and retained the ability to target ErbB-2-expressing cells. The fabricated cells have the potential to serve as drug carriers in drug targeting applications.  相似文献   

19.
The protein kinase domains of v-kit, the oncogene of the acute transforming feline retrovirus HZ4-FeSV (HZ4-feline sarcoma virus), CSF-1R (macrophage colony stimulating factor receptor) and PDGFR (platelet derived growth factor receptor) display extensive homology. Because of the close structural relationship of v-kit, CSF-1R and PDGFR we predicted that c-kit would encode a protein kinase transmembrane receptor (Besmer et al., 1986a; Yarden et al., 1986). We have now determined the primary structure of murine c-kit from a DNA clone isolated from a brain cDNA library. The nucleotide sequence of the c-kit cDNA predicts a 975 amino acid protein product with a calculated mol. wt of 109.001 kd. It contains an N-terminal signal peptide, a transmembrane domain (residues 519-543) and in the C-terminal half the v-kit homologous sequences (residues 558-925). c-kit therefore contains the features which are characteristic of a transmembrane receptor kinase. Comparison of c-kit, CSF-1R and PDGFR revealed a unique structural relationship of these receptor kinases suggesting a common evolutionary origin. The outer cellular domain of c-kit was shown to be related to the immunoglobulin superfamily. The sites of expression of c-kit in normal tissue predict a function in the brain and in hematopoietic cells. N-terminal sequences which include the extracellular domain and the transmembrane domain as well as 50 amino acids from the C-terminus of c-kit are deleted in v-kit. These structural alterations are likely determinants of the oncogenic activation of v-kit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
R L Cagan  H Kr?mer  A C Hart  S L Zipursky 《Cell》1992,69(3):393-399
During Drosophila retinal development, the R8 photo-receptor neuron induces a neighboring cell to assume an R7 cell fate through cell contact. This is mediated by the transmembrane protein bride of sevenless (boss) on the surface of the R8 cell, which binds the sevenless tyrosine kinase receptor (sev) on the surface of the R7 precursor cell. The boss protein, which contains a large extracellular domain, seven transmembrane segments, and a C-terminal cytoplasmic domain, has an exceptional structure for a ligand of a receptor tyrosine kinase. Using a panel of antibodies directed to various cytoplasmic and extracellular epitopes, we demonstrate that the entire boss protein from its extreme N-terminus to its extreme C-terminus is internalized by sev-expressing tissue culture cells and by the R7 precursor cell in the developing eye imaginal disc. The receptor-mediated transfer of a transmembrane ligand represents a novel mechanism for protein transfer between developing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号