首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recombinant human arginase (rhArg) has been developed for arginine derivation therapy of cancer and is currently in clinical trials for a variety of malignant solid tumors. In this study, we reported for the first time that rhArg could induce obvious autophagy in human melanoma cells; inhibition of autophagy by chloroquine (CQ) significantly increased rhArg-induced cell apoptosis and growth inhibition of A375 cells. A significant increase in mitochondrial membrane potential loss and elevated intracellular reactive oxygen species (ROS) levels were detected in A375 cells after rhArg treatment when compared with control. Membrane transition inhibitor cyclosporine A blocked autophagy and accelerated cell death induced by rhArg, indicating that rhArg induced autophagy via mitochondria pathway. Furthermore, antioxidant N-acetyl-l-cysteine suppressed rhArg-induced autophagy and rescued cells from cell growth inhibition, suggesting that ROS played an important role in rhArg-induced A375 cell growth inhibition and autophagy. Akt/mTOR signaling pathway was involved in autophagy induced by rhArg in a time-dependent manner. Moreover, rhArg could induce ERK1/2 activation in a dose- and time-dependent manner and rhArg-induced autophagy was attenuated when p-ERK1/2 was inhibited by MEK 1/2 inhibitor, U0126. Taken together, this study provides new insight into the molecular mechanism of autophagy involved in rhArg-induced cell apoptosis and growth inhibition, which facilitates the development of rhArg in combination with CQ as a potential therapy for malignant melanoma.  相似文献   

2.
Z Wang  X Shi  Y Li  J Fan  X Zeng  Z Xian  Z Wang  Y Sun  S Wang  P Song  S Zhao  H Hu  D Ju 《Cell death & disease》2014,5(12):e1563
Depletion of arginine by recombinant human arginase (rhArg) has proven to be an effective cancer therapeutic approach for a variety of malignant tumors. Triple-negative breast cancers (TNBCs) lack of specific therapeutic targets, resulting in poor prognosis and limited therapeutic efficacy. To explore new therapeutic approaches for TNBC we studied the cytotoxicity of rhArg in five TNBC cells. We found that rhArg could inhibit cell growth in these five TNBC cells. Intriguingly, accumulation of autophagosomes and autophagic flux was observed in rhArg-treated MDA-MB-231 cells. Inhibition of autophagy by chloroquine (CQ), 3-methyladenine (3-MA) and siRNA targeting Beclin1 significantly enhanced rhArg-induced cytotoxic effect, indicating the cytoprotective role of autophagy in rhArg-induced cell death. In addition, N-acetyl-l-cysteine (NAC), a common antioxidant, blocked autophagy induced by rhArg, suggesting that reactive oxygen species (ROS) had an essential role in the cytotoxicity of rhArg. This study provides new insights into the molecular mechanism of autophagy involved in rhArg-induced cytotoxicity in TNBC cells. Meanwhile, our results revealed that rhArg, either alone or in combination with autophagic inhibitors, might be a potential novel therapy for the treatment of TNBC.Breast cancer, the most common cause of cancer death in women, is a kind of complex and heterogeneous neoplasm.1 Approximately 15% of breast carcinomas are triple-negative breast cancers (TNBCs), which have high rates of recurrences and mortality.2 TNBCs are defined by the lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor type 2 (HER2). These tumors are characterized by clinically aggressive behaviors, high recurrence rate and poor prognosis. Owing to lack of targeted therapies (such as hormone therapy or anti-HER2 therapy), currently chemotherapy is the primary treatment for TNBC.3 Therefore, investigating new therapeutic approaches is urgently needed for improving the clinical outcome of TNBC therapy.Recently, deprivation of l-arginine has been a potential therapeutic method for cancers.4 By culturing cells in the arginine-free media, a variety of human cancer cells have been found to be auxotrophic for arginine, depletion of which resulted in cell death. Importantly, recombinant human arginase (rhArg) has shown potent anticancer effect in acute myeloid leukemia and acute lymphoblastic T-cell leukemia and solid tumors in vitro and in vivo5, 6, 7, 8, 9 and is currently under clinical investigation for the treatment of melanoma10 and hepatocellular carcinoma (HCC).11 These carcinomas are auxotrophic for arginine, mainly because of the absence of arginine endogenous synthetical pathway. However, there are no reports about the efficiency in the therapy of breast cancer by rhArg through depletion of arginine.An increasing number of studies have shown that autophagy is stimulated in response to external stressors (such as starvation and oxidative stress) and internal needs (for example, removal of aggregate-prone proteins).12 Autophagy is an evolutionarily conserved catabolic process responsible for the routine degradation of bulk superfluous or dysfunctional proteins and organelles.13 Autophagy serves as a protective role in response to a majority of anticancer drugs and in the pathogenesis process.14, 15 Not surprisingly, the relationship between autophagy and apoptosis, both genetically regulated and evolutionarily conserved, is complex, and appears to be related to cellular contexts.16 Meanwhile, mounting evidence accumulated has revealed that autophagy stimulation and reactive oxygen species (ROS) are closely linked in response to cancer therapeutics.17, 18 Notably, the essential contribution of mitochondrially generated ROS in the modulation of autophagy during starvation has been highlighted.In this study, we investigated whether rhArg might be a potential therapy for TNBC. We reported for the first time that rhArg-induced cell growth inhibition and caspase 3-independent apoptosis in MDA-MB-231 cells. Also, we found that rhArg could induce autophagy in MDA-MB-231 cells in a dose- and time-dependent manner. Interestingly, blocking autophagy potentiated cytotoxicity induced by rhArg, indicating that autophagy had a cytoprotective role in the treatment of rhArg. Meanwhile, ROS was involved in the autophagy and cell growth inhibition induced by rhArg. With our findings mentioned above, rhArg has shown potential to be a promising therapy for TNBC. Furthermore, the combination with autophagy-targeting drugs displayed multipronged treatment for breast cancer therapy.  相似文献   

3.
We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.  相似文献   

4.
《Autophagy》2013,9(4):305-306
Preconditioning and postconditioning increased numbers of living cells and decreased that of necrotic, apoptotic and autophagic cells in anoxia-reoxygenation of isolated cardiomyocytes. It was established that proteasome inhibitors prevented the necrotic and apoptotic cell death of cardiomyocytes in anoxia-reoxygenation and in such a way reproduce the effect of pharmacological preconditioning and postconditioning. In this case, the population of autophagic cardiomyocytes has not changed considerably or had a tendency of increasing compared to anoxia-reoxygenation. The data obtained showed that the specific protective effect of proteasome inhibitors could be caused by autophagy activation. In our recent experiments new data supporting this hypothesis were obtained. The inhibition of autophagy with N-3-methyladenine during anoxia-reoxygenation caused an increase in the number of necrotic cells and a decrease of the live cell population. Moreover, simultaneous inhibition of both autophagy and apoptosis (N-3-methyladenine and caspase-3 inhibitor application) in anoxia-reoxygenation led to a dramatic increase of necrotic cardiomyocytes and a concomitant decrease in the number of living cells. Thus, the process of autophagy in cardiomyocytes during anoxia-reoxygenation may lead not only to programmed cell death, but has also some protective effect. The mechanisms of this phenomenon are still in need of thorough investigation.  相似文献   

5.
Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.  相似文献   

6.
Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.  相似文献   

7.
Preconditioning and postconditioning increased numbers of living cells and decreased that of necrotic, apoptotic and autophagic cells in anoxia-reoxygenation of isolated cardiomyocytes. It was established that proteasome inhibitors prevented the necrotic and apoptotic cell death of cardiomyocytes in anoxia-reoxygenation and in such a way reproduce the effect of pharmacological preconditioning and postconditioning. In this case, the population of autophagic cardiomyocytes has not changed considerably or had a tendency of increasing compared to anoxia-reoxygenation. The data obtained showed that the specific protective effect of proteasome inhibitors could be caused by autophagy activation. In our recent experiments new data supporting this hypothesis were obtained. The inhibition of autophagy with N-3-methyladenine during anoxia-reoxygenation caused an increase in the number of necrotic cells and a decrease of the live cell population. Moreover, simultaneous inhibition of both autophagy and apoptosis (N-3-methyladenine and caspase-3 inhibitor application) in anoxia-reoxygenation led to a dramatic increase of necrotic cardiomyocytes and a concomitant decrease in the number of living cells. Thus, the process of autophagy in cardiomyocytes during anoxia-reoxygenation may lead not only to programmed cell death, but has also some protective effect. The mechanisms of this phenomenon are still in need of thorough investigation.  相似文献   

8.
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.  相似文献   

9.
Shen HM  Codogno P 《Autophagy》2011,7(5):457-465
The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.  相似文献   

10.
As phagocytic cells of central nervous system, excessive activation or cell death of microglia is involved in a lot of nervous system injury and degenerative disease, such as stroke, epilepsy, Parkinson''s disease, Alzheimer''s disease. Accumulating evidence indicates that hypoxia upregulates HIF-1α expression leading to cell death of microglia. However, the exact mechanism of cell death induced by hypoxia in microglia is not clear. In the current study, we showed that hypoxia induced cell death and autophagy in microglia. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (BECN1 and ATG5) decreased the cell death induced by hypoxia in microglia cells. Moreover, the suppression of HIF-1α using either pharmacologic inhibitors (3-MA, Baf A1) or RNA interference decreased the microglia death and autophagy in vitro. Taken together, these data indicate that hypoxia contributes to autophagic cell death of microglia through HIF-1α, and provide novel therapeutic interventions for cerebral hypoxic diseases associated with microglia activation.  相似文献   

11.
Cancer initiation and progression have been associated with dysregulated long non-coding RNA (lncRNA) expression. However, the lncRNA expression profile in aggressive B-cell non-Hodgkin lymphoma (NHL) has not been comprehensively characterized. This systematic review aims to evaluate the role of lncRNAs as a biomarker to investigate their future potential in the diagnosis, real-time measurement of response to therapy and prognosis in aggressive B-cell NHL. We searched PubMed, Web of Science, Embase and Scopus databases using the keywords “long non-coding RNA”, “Diffuse large B-cell lymphoma”, “Burkitt's lymphoma” and “Mantle cell lymphoma”. We included studies on human subjects that measured the level of lncRNAs in samples from patients with aggressive B-cell NHL. We screened 608 papers, and 51 papers were included. The most studied aggressive B-cell NHL was diffuse large B-cell lymphoma (DLBCL). At least 79 lncRNAs were involved in the pathogenesis of aggressive B-cell NHL. Targeting lncRNAs could affect cell proliferation, viability, apoptosis, migration and invasion in aggressive B-cell NHL cell lines. Dysregulation of lncRNAs had prognostic (e.g. overall survival) and diagnostic values in patients with DLBCL, Burkitt's lymphoma (BL), or mantle cell lymphoma (MCL). Furthermore, dysregulation of lncRNAs was associated with response to treatments, such as CHOP-like chemotherapy regimens, in these patients. LncRNAs could be promising biomarkers for the diagnosis, prognosis and response to therapy in patients with aggressive B-cell NHL. Additionally, lncRNAs could be potential therapeutic targets for patients with aggressive B-cell NHL like DLBCL, MCL or BL.  相似文献   

12.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

13.
Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs) in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication), takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.  相似文献   

14.
In the current study, we showed that the combination of mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) and Akt inhibitor MK-2206 exerted synergistic cytotoxic effects against low-phosphatase and tensin homolog (PTEN) gastric cancer cells (HGC-27 and SNU-601 lines). In HGC-27 cells, RAD001 and MK-2206 synergistically induced G1/S cell cycle arrest, growth inhibition, cell death but not apoptosis. RAD001 and MK-2206 synergistically induced light chain 3B (LC3B) and beclin-1 expression, two important autophagy indicators. Meanwhile, the autophagy inhibitor 3-methyladenine (3-MA) and chloroquine inhibited the cytotoxic effects by RAD001 and MK-2206, suggesting that autophagic, but not apoptotic cell death was important for the cytotoxic effects by the co-administration. We observed that the combination of RAD001 and MK-2206 exerted enhanced effects on Akt/mTOR inhibition, cyclin D1 down-regulation and ERK/MAPK(extracellular signal-regulated kinase/mitogen-activated protein kinases) activation. Intriguingly, MEK/ERK inhibitors PD98059 and U0126 suppressed RAD001 plus MK-2206-induced beclin-1 expression, autophagy induction and cytotoxicity in HGC-27 cells. In conclusion, these results suggested that the synergistic anti-gastric cancer cells ability by RAD001 and MK-2206 involves ERK-dependent autophagic cell death pathway.  相似文献   

15.
The major pathways for protein degradation are the proteasomal and lysosomal systems. Derangement of protein degradation causes the formation of intracellular inclusions, and apoptosis and is associated with several diseases. We utilized hepatocyte-derived cell lines to examine the consequences of the cytoplasmic hepatocyte Mallory-Denk body-like inclusions on organelle organization, autophagy and apoptosis, and tested the hypothesis that autophagy affects inclusion turnover. Proteasome inhibitors (PIs) generate keratin-containing Mallory-Denk body-like inclusions in cultured cells and cause reorganization of mitochondria and other organelles, autophagy and apoptosis. In cultured hepatoma cells, caspase inhibition blocks PI-induced apoptosis but not inclusion formation or autophagy activation. Autophagy induction by rapamycin decreases the extent of PI-induced inclusions and apoptosis in Huh7 and OUMS29 cells. Surprisingly, blocking of autophagy sequestration by 3 methyl adenine or beclin 1 siRNA, but not bafilomycin A1 inhibition of autophagic degradation, also inhibits inclusion formation in the tested cells. Therefore, autophagy can be upstream of apoptosis and may promote or alleviate inclusion formation in cell culture in a context-dependent manner via putative autophagy-associated molecular triggers. Manipulation of autophagy may offer a strategy to address the importance of inclusion formation and its significance in inclusion-associated diseases.  相似文献   

16.
Kim KW  Hwang M  Moretti L  Jaboin JJ  Cha YI  Lu B 《Autophagy》2008,4(5):659-668
Autophagy has been reported to be increased in irradiated cancer cells resistant to various apoptotic stimuli. We therefore hypothesized that induction of autophagy via mTOR inhibition could enhance radiosensitization in apoptosis-inhibited H460 lung cancer cells in vitro and in a lung cancer xenograft model. To test this hypothesis, combinations of Z-DEVD (caspase-3 inhibitor), RAD001 (mTOR inhibitor) and irradiation were tested in cell and mouse models. The combination of Z-DEVD and RAD001 more potently radiosensitized H460 cells than individual treatment alone. The enhancement in radiation response was not only evident in clonogenic survival assays, but also was demonstrated through markedly reduced tumor growth, cellular proliferation (Ki67 staining), apoptosis (TUNEL staining) and angiogenesis (vWF staining) in vivo. Additionally, upregulation of autophagy as measured by increased GFP-LC3-tagged autophagosome formation accompanied the noted radiosensitization in vitro and in vivo. The greatest induction of autophagy and associated radiation toxicity was exhibited in the tri-modality treatment group. Autophagy marker, LC-3-II, was reduced by 3-methyladenine (3-MA), a known inhibitor of autophagy, but further increased by the addition of lysosomal protease inhibitors (pepstatin A and E64d), demonstrating that there is autophagic induction through type III PI3 kinase during the combined therapy. Knocking down of ATG5 and beclin-1, two essential autophagic molecules, resulted in radiation resistance of lung cancer cells. Our report suggests that combined inhibition of apoptosis and mTOR during radiotherapy is a potential therapeutic strategy to enhance radiation therapy in patients with non-small cell lung cancer.  相似文献   

17.
18.
Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors.  相似文献   

19.
《Autophagy》2013,9(1):115-117
Mantle cell lymphoma (MCL) is an aggressive neoplasm, which lacks effective therapy. The mechanistic target of rapamycin (MTOR) kinase inhibitor everolimus (RAD001) has shown activity in preclinical and clinical models of MCL, despite the fact that its mechanism of action has not been fully elucidated. We found that everolimus activity in MCL cells is closely linked to AKT phosphorylation status, and that the prevention of AKT rephosphorylation upon everolimus treatment by means of a selective AKT inhibitor, greatly enhances everolimus activity. Furthermore, our data show that an accumulation of autophagic vacuoles correlates with a lack of efficacy of dual AKT-MTOR targeting and that the complete therapeutic potential of this strategy can be restored by ATG gene selective knockdown or secondary inhibition of autolysosome formation by hydroxychloroquine. We thus demonstrated for the first time that the use of an autophagy inhibitor can overcome resistance to the combination of MTOR and AKT inhibitors in MCL cell lines and primary samples, demonstrating the prosurvival role of autophagy in AKT-MTOR compromised cells, and pointing out some potential opportunities using this triple combinational strategy in hematological malignancies.  相似文献   

20.
(-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro. Taken together, the current study suggested that EGCG emerges as a chemotherapeutic augmenter and synergistically enhances DOX anticancer effects involving autophagy inhibition in HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号