首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The idea of using carbohydrate-based drugs to prevent attachment of microbial pathogens to host tissues has been around for about three decades. This concept evolved from the observation that many pathogenic microbes bind to complex carbohydrate sequences on the surface of host cells. It stands to reason, therefore, that analogs of the carbohydrate sequences pathogens bind to could be used to competitively inhibit these interactions, thereby preventing microbial damage to the host. This article will summarize some of the recent advances in developing such carbohydrate-based anti-infective drugs.  相似文献   

2.
Advances in the field of genomics and 'metagenomics' have dramatically revised our view of microbial biodiversity and its potential for biotechnological applications. Considering the estimation that >99% of microorganisms in most environments are not amenable to culturing, very little is known about their genomes, genes and encoded enzymatic activities. The isolation, archiving and analysis of environmental DNA (or so-called 'metagenomes') has enabled us to mine microbial diversity, allowing us to access their genomes, identify protein coding sequences and even to reconstruct biochemical pathways, providing insights into the properties and functions of these organisms. The generation and analysis of (meta)genomic libraries is thus a powerful approach to harvest and archive environmental genetic resources. It will enable us to identify which organisms are present, what they do, and how their genetic information can be beneficial to mankind.  相似文献   

3.
Microorganisms exist in nature as members of complex, mixed communities. The microbial communities in industrial wastewater bioreactors can be used as model systems to study the evolution of new metabolic pathways in natural ecosystems. The evolution of microbial metabolic capability in these bioreactors is presumably analogous to phenomena that occur in natural ecosystems. The microorganisms in these bioreactors compete for different carbon sources and constantly have to evolve new metabolic capabilities for survival. Thus, industrial bioreactors should be a rich source of novel biocatalysts.  相似文献   

4.
Prospecting for novel biocatalysts in a soil metagenome   总被引:16,自引:0,他引:16  
The metagenomes of complex microbial communities are rich sources of novel biocatalysts. We exploited the metagenome of a mixed microbial population for isolation of more than 15 different genes encoding novel biocatalysts by using a combined cultivation and direct cloning strategy. A 16S rRNA sequence analysis revealed the presence of hitherto uncultured microbes closely related to the genera Pseudomonas, Agrobacterium, Xanthomonas, Microbulbifer, and Janthinobacterium. Total genomic DNA from this bacterial community was used to construct cosmid DNA libraries, which were functionally searched for novel enzymes of biotechnological value. Our searches in combination with cosmid sequencing resulted in identification of four clones encoding 12 putative agarase genes, most of which were organized in clusters consisting of two or three genes. Interestingly, nine of these agarase genes probably originated from gene duplications. Furthermore, we identified by DNA sequencing several other biocatalyst-encoding genes, including genes encoding a putative stereoselective amidase (amiA), two cellulases (gnuB and uvs080), an alpha-amylase (amyA), a 1,4-alpha-glucan branching enzyme (amyB), and two pectate lyases (pelA and uvs119). Also, a conserved cluster of two lipase genes was identified, which was linked to genes encoding a type I secretion system. The novel gene aguB was overexpressed in Escherichia coli, and the enzyme activities were determined. Finally, we describe more than 162 kb of DNA sequence that provides a strong platform for further characterization of this microbial consortium.  相似文献   

5.
The recently generated database of microbial genes from an oligotrophic environment populated by a calculated 1800 major phylotypes (the Sargasso Sea metagenome-SSM) presents a great source for expanding local databases of genes indicative of a specific function. In this article we analyse the SSM for the presence of methanopterin-linked C1 transfer genes that are signature for methylotrophy. We conclude that more than 10 phylotypes possessing genes of interest are present in this environment. The sequences representative of these major phylotypes do not appear to belong to any known microbial group capable of methanopterin-linked C1 transfer. Instead, these sequences separate from all known sequences on phylogenetic trees, pointing toward their affiliation with novel microbial phyla. These data imply a broader distribution of methanopterin-linked functions in the microbial world than has been previously known.  相似文献   

6.
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.  相似文献   

7.
The level of microbial resistance to heavy metals is an important issue for the microbial ecology of heavy metal-contaminated habitats. However, assays based upon growth in nutrient media will overestimate the resistance level due to metal ion interactions with inorganic and organic components. The analysis of Pb-resistant bacteria isolated from soils containing up to 38 mmol total Pb x kg(-1) indicated that PYT80B medium which did not contain inorganic salts, contained low amounts of organic matter, and was buffered with a molecule that did not interact with metal ions (2-N-morpholinoethanesulfonic acid (MES)) provided the lowest estimates of lead resistance. However, better results were obtained by assaying metabolic activity (aerobic respiration) of resting cells suspended in 10 mM MES. By this criterion, 50% inhibition of Arthrobacter JS7 was found at 37 microM Pb(NO3)2. The effects of Pb+2 concentrations upon respiration of resting cells and growth rate in PYT80B medium were similar. The activity assay also showed that metal resistance was induced to higher levels when Arthrobacter JS7 was grown in the presence of Pb.  相似文献   

8.
Combinations of microscopy and molecular techniques to detect, identify and characterize microorganisms in environmental and medical samples are widely used in microbial ecology and biofilm research. The scope of these methods, which include fluorescence in situ hybridization (FISH) with rRNA-targeted probes, is extended by digital image analysis routines that extract from micrographs important quantitative data. Here we introduce daime (digital image analysis in microbial ecology), a new computer program integrating 2-D and 3-D image analysis and visualization functionality, which has previously not been available in a single open-source software package. For example, daime automatically finds 2-D and 3-D objects in images and confocal image stacks, and offers special functions for quantifying microbial populations and evaluating new FISH probes. A novel feature is the quantification of spatial localization patterns of microorganisms in complex samples like biofilms. In combination with '3D-FISH', which preserves the 3-D structure of samples, this stereological technique was applied in a proof of principle experiment on activated sludge and provided quantitative evidence that functionally linked ammonia and nitrite oxidizers cluster together in their habitat. This image analysis method complements recent molecular techniques for analysing structure-function relationships in microbial communities and will help to characterize symbiotic interactions among microorganisms.  相似文献   

9.
Cellulases hydrolyze the β-1,4 linkages of cellulose and are widely used in food, brewing and wine, animal feed, textiles and laundry, and pulp and paper industries, especially for hydrolyzing cellulosic materials into sugars, which can be fermented to produce useful products such as ethanol. Metagenomics has become an alternative approach to conventional culture-dependent methods as it allows exhaustive mining of microbial genomes in their natural environments. This review covers the current state of research and challenges in mining novel cellulase genes from the metagenomes of various environments, and discusses the potential biotechnological applications of metagenome-derived cellulases.  相似文献   

10.
Current methodologies for global identification of microbial proteins that elicit host humoral immune responses have several limitations and are not ideally suited for use in the postgenomic era. Here we describe a novel application of proteomics, proteomics-based expression library screening, to rapidly define microbial immunoproteomes. Proteomics-based expression library screening is broadly applicable to any cultivable, sequenced pathogen eliciting host antibody responses and hence is ideal for rapidly mining microbial proteomes for targets with diagnostic, prophylactic, and therapeutic potential. In this report, we demonstrate "proof-of-principle" by identifying 207 proteins of the Escherichia coli O157:H7 immunome in bovine reservoirs in only 3 weeks.  相似文献   

11.
DNA as a nutrient: novel role for bacterial competence gene homologs   总被引:11,自引:0,他引:11       下载免费PDF全文
The uptake and stable maintenance of extracellular DNA, genetic transformation, is universally recognized as a major force in microbial evolution. We show here that extracellular DNA, both homospecific and heterospecific, can also serve as the sole source of carbon and energy supporting microbial growth. Mutants unable to consume DNA suffer a significant loss of fitness during stationary-phase competition. In Escherichia coli, the use of DNA as a nutrient depends on homologs of proteins involved in natural genetic competence and transformation in Haemophilus influenzae and Neisseria gonorrhoeae. Homologs of these E. coli genes are present in many members of the gamma subclass of Proteobacteria, suggesting that the mechanisms for consumption of DNA may have been widely conserved during evolution.  相似文献   

12.
The construction of a complex genomic library is one of the comprehensive ways to study a complex bacterial community and to access the variety of metabolic pathways present in the rich soil environment. In this report, we developed a new protocol whereby we are able to retrieve nearly complete microbe genomic fragments from soil samples, which are employed to generate a metagenomic library for visualizing the basic scaffolding of the soil microbial community. The use of direct cell lysis within soil-embedded agarose plugs, along with a double-size selection, enabled us to successfully isolate pure and high-molecular weight DNA (0.1-1 Mb) without the need for any further purification. A metagenomic library containing 1.2 Gbp of DNA in total was constructed. Furthermore, analysis of the microbial community structure using 16S rDNA partial sequences found the dominant phylotypes to consist of alpha-Proteobacteria and Actinobacteria, which are similar to those seen in forest and agricultural soils, and numerous uncultured microbes from a wide variety of bacterial taxa as well. In conclusion, this study presents a novel protocol for generating a metagenomic library that carries much larger and diverse DNA fragments from soil bacteria that will be applied for the reconstruction of soil microbial genomes and the discovery of novel habitat-specific pathways.  相似文献   

13.
The data used for profiling microbial communities is usually sparse with some microbes having high abundance in a few samples and being nearly absent in others. However, current bioinformatics tools able to deal with this sparsity are lacking. pime (Prevalence Interval for Microbiome Evaluation) was designed to remove those taxa that may be high in relative abundance in just a few samples but have a low prevalence overall. The reliability and robustness of pime were compared against existing methods and tested using 16S rRNA independent data sets. pime filters microbial taxa not shared in a per treatment prevalence interval started at 5% prevalence with increasing increments of 5% at each filtering step. For each prevalence interval, hundreds of decision trees were calculated to predict the likelihood of detecting differences in treatments. The best prevalence‐filtered data set was user‐selected by choosing the prevalence interval that kept a large portion of the 16S rRNA sequences in the data set while also showing the lowest error rate. To obtain the likelihood of introducing type I error while building prevalence‐filtered data sets, an error detection step based was also included. A pime reanalysis of published data sets uncovered other expected microbial associations than previously reported, which may be masked when only relative abundance was considered.  相似文献   

14.
A new tool, HPLC Studio, was developed for the comparison of high-performance liquid chromatography (HPLC) chromatograms from microbial extracts. The new utility makes it possible to create a virtual chromatogram by mixing up to 20 individual chromatograms. The virtual chromatogram is the first step in establishing a ranking of the microbial fermentation conditions based on either the area or diversity of HPLC peaks. The utility was used to maximize the diversity of secondary metabolites tested from a microorganism and therefore increase the chances of finding new lead compounds in a drug discovery program.  相似文献   

15.
Two new yeast strains (SPT1 and SPT2) were isolated and immobilized on glassy carbon electrodes to form microbial biosensors for estimation of biochemical oxygen demand (BOD). Ferricyanide was proven to be the most efficient mediator to shuttle electrons from the redox center of reduced microbial enzymes to the electrode in the presence of excess glucose/glutamic acid (GGA). With a 3-fold greater metabolic assimilation capability and greater responses to various effluent samples, SPT1 was selected for sensor-BOD measurements. BOD estimations for the GGA standard resulted in an extended linear range: 2-100 mg/l. Response reproducibility was +/-10% for a GGA standard containing 10 mg BOD/l. For analysis of pulp mill effluents, the BOD detection limit was 2 mg/l with a response time of 5 min.  相似文献   

16.
ABSTRACT: The threat of emerging pathogens and microbial drug resistance has spurred tremendous efforts to develop new and more effective antimicrobial strategies. Recently, a novel ultrashort pulsed (USP) laser technology has been developed that enables efficient and chemical-free inactivation of a wide spectrum of viral and bacterial pathogens. Such a technology circumvents the need to introduce potentially toxic chemicals and could permit safe and environmentally friendly pathogen reduction, with a multitude of possible applications including the sterilization of pharmaceuticals, blood products, and the generation of attenuated or inactivated vaccines.  相似文献   

17.
Extremophiles as a source for novel enzymes   总被引:14,自引:0,他引:14  
Microbial life does not seem to be limited to specific environments. During the past few decades it has become clear that microbial communities can be found in the most diverse conditions, including extremes of temperature, pressure, salinity and pH. These microorganisms, called extremophiles, produce biocatalysts that are functional under extreme conditions. Consequently, the unique properties of these biocatalysts have resulted in several novel applications of enzymes in industrial processes. At present, only a minor fraction of the microorganisms on Earth have been exploited. Novel developments in the cultivation and production of extremophiles, but also developments related to the cloning and expression of their genes in heterologous hosts, will increase the number of enzyme-driven transformations in chemical, food, pharmaceutical and other industrial applications.  相似文献   

18.
It is conventional to describe the relationship between the specific rate of microbial growth and the concentration of the inhibitory substrate in terms of the Andrews–Edwards equation. A novel method for establishing the constants of this equation is presented. The equation is transformed to a polynomial and the empirical data are approximated by a quadratic polynomial. The results obtained for the biodegradation of phenol in a mixed culture (activated sludge) are discussed.  相似文献   

19.
Expression profile analysis of genes provides valuable information concerning the genetic response of cells to stimuli. We describe an adaptation of this technology that can be used to probe for the expression of specific families of genes in microbial species. In our method a combination of sets of oligonucleotide probes representing fingerprint sequences specific to protein families is used to identify the presence and expression levels of family homologs in a microbial cell. We demonstrate computationally, using exemplars, that when the cDNA complement from an organism is sequentially screened against a set of specific motif oligonucleotides, statistically significant information can be obtained concerning the expression of the corresponding genes. This method can be used to identify specific genes and pathways simultaneously in several organisms of interest even in the absence of sequence information from the organisms.  相似文献   

20.
The rapid determination of waste-water quality of waste-water treatment plants in terms of pollutional strength, i.e. biochemical oxygen demand (BOD) is difficult or even impossible using the chemical determination method. The present study reports the determination of BOD within minutes using microbial BOD sensors, as compared to the 5-day determination using the conventional method. Multiple criteria establish the basis for the development of a BOD biosensor useful for rapid and reliable BOD estimation in industrial waste-waters. Of these, preparation of a suitable novel immobilized microbial membrane used in conjunction with an apt transducer is discussed. As a result, a microbial biosensor based on a formulated, synergistic, pre-tested microbial consortium has been developed for the measurement of BOD load of various industrial waste-waters. The sensor showed maximum response in terms of current difference, when a cell concentration of 2.25 x 10(10) CFU, harvested in their log phase of growth were utilized for microbial membrane construction. The sensor showed a stability of 180 days when the prepared membranes were stored at a temperature of 4 degrees C in 50 mM phosphate buffer of pH 6.8. The reusability of the immobilized membranes was up to 200 cycles without appreciable loss of their response characteristics. A linear relationship between the current change and a glucose-glutamic acid (GAA) concentration up to 60 mg l(-1) was observed (r=0.999). The lower detection limit was 1.0 mg l(-1) BOD. The sensor response was reproducible within +/-5% of the mean in a series of ten samples having 44 mg l(-1) BOD using standard a GGA solution. When used for the BOD estimation of industrial waste-waters, a relatively good agreement was found between the two methods, i.e. 5-day BOD and that measured by the developed microbial sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号