首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
pib基因启动子及其诱导启动性初探   总被引:6,自引:0,他引:6  
李婵娟  杨世湖  武亮  万建民 《遗传》2006,28(6):689-694
将pib基因上游5.7 kb区段取代pCAMBIA1301中gus基因上游的35S启动子构建了pib拟启动区-GUS+ 35S-hpt 基因表达载体pNAR604。经农杆菌介导转化水稻成熟胚愈伤,获得了转基因抗潮霉素愈伤和36株转基因水稻植株。 转基因抗性愈伤和转基因植株根的组织化学GUS活性检测表明,光照培养下的抗性愈伤和转基因植株根不能使X-gluc显色,而暗处理24 h后的抗性愈伤和定植后转基因植株的根能使X-gluc显色。转基因植株GUS荧光定量分析结果表明,GUS表达具有器官特异性,黑暗处理前根的GUS活性最高、茎次之,分别是是叶片的7倍和3倍,叶片中仅有痕量本底。24 h黑暗处理后根、茎、叶中GUS活性都有增加,且叶片中的增加比例最大,其活性仅次于根。5 mmol/L水杨酸和0.3 mol/L NaCl叶面喷施转基因植株24 h后叶片中GUS活性分别为处理前的2.7和3.6倍。初步确定pib拟启动区是一个诱导型启动子。黑暗、水杨酸和NaCl能诱导该启动子启动活性。  相似文献   

3.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T0). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T1) produced the highest GUS activity when treated with 150 μM Cu2+ compared to the control (without Cu2+). However, Zn2+ and Fe2+ treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T1 seedlings of tomato when subjected to Cu2+ ions.  相似文献   

4.
The enzyme 4-coumarate:coenzyme A ligase (4CL) plays an important role in phenylpropanoid metabolism. The 5′-upstream regions of two Sm4CL genes were isolated from danshen (Salvia miltiorrhiza Bunge) and their functions were characterized by promoter-directed GUS gene expression assay in transgenic Arabidopsis. Seedlings containing pSm4CL1 promoter:GUS fusions showed apparent GUS staining in hypocotyl and those harboring pSm4CL2 promoter:GUS fusions were clearly stained in cotyledon vasculars and roots. Mature Arabidopsis transformed with pSm4CL1 promoter:GUS exhibited GUS expression which was weak in the shoots and scarcely in roots and those modified with pSm4CL2 promoter:GUS displayed obvious GUS staining in roots, stigmatic papillae, stamens and sepal veins. Semi-quantitative RT-PCR revealed that Sm4CL2 was transcribed at the highest level in roots which was also shown to be the major accumulation site of salvianolic acid B. The results suggested that Sm4CL2 rather than Sm4CL1 might be responsible for the biosynthesis of salvianolic acid B in danshen roots.  相似文献   

5.
以海州香薷基因组DNA为模板,通过hiTAIL-PCR和walking技术扩增得到其细胞壁转化酶基因启动子(Ehcw INVP)片段,长度为1727 bp。生物信息学分析结果表明,该启动子片段中含有多个对脱落酸、赤霉素、细胞分裂素等激素以及对干旱、低温、重金属铜等逆境胁迫响应相关的顺式作用元件。将通过克隆得到的Ehcw INVP序列替换p CAMBIA1301载体上驱动GUS报告基因表达的Ca MV35S启动子序列,构建Ehcw INVP融合GUS的植物表达载体Ehcw INVP::GUS。转基因拟南芥植株的组织化学分析结果表明,海州香薷细胞壁转化酶基因启动子序列具有驱动GUS基因表达的功能,且在10μmol/L铜胁迫下,转基因拟南芥植株叶和根中的GUS活性分别约是对照组的1.7倍和1.5倍。  相似文献   

6.
番茄果实特异性启动子的克隆与遗传转化研究   总被引:2,自引:0,他引:2  
为了实现外源基因在番茄果实中的高效和特异表达,克隆了番茄果实特异基因多聚半乳糖醛酸酶基因( Polygalacturonase,PG)的启动子.以中蔬四号番茄为材料,建立并优化了以子叶为外植体的番茄高效再生和遗传转化体系;以GUS为报告基因,构建PG:GUS植物表达载体,转化番茄.结果表明,在1.0 mg/L ZT的MS分化培养中,番茄子叶的发芽率最高,芽的诱导率高达91%,且发生畸态芽和褐化的外植体最少;通过抗生素浓度对农杆菌的抑制效果试验发现,当头孢霉素的浓度为200 mg/L时,抑制农杆菌的效果最好;成功克隆了番茄PG启动子,将PG启动子驱动的GUS基因转入番茄,对转基因后代果实的GUS染色表明,PG启动子驱动的外源基因在果实中特异表达.  相似文献   

7.
8.
Metallothionein (MT) has two domains, α and β domain. α domain preferred to bind Cd2+and Hg2+. Mouse metallothionein mutant αα has been constructed and expressed in E.coli, which has the same stability as the nature one but has stronger affinity to heavy metals. To testify the result in vivo, αα mutant gene was cloned into plant expression vector pE3 under the CaMV 35S promoter. A transgenic tobacco was obtained by using leaf discs of tobacco (Nicotiana tabacum L. cv. NC89) to Agrobacterium-mediated ααgene transfer. Southern blotting analysis indicated that the αα mutant gene was indeed integrated into the tobacco genome; Western blot indicated that the αα mutant gene was expressed in transgenic tobacco. It was also demonstrated that the transgenic tobacco with αα mutant gene have a little higher tolerance to heavy metals than that with natural MT gene. Moreover, the transgenic tobacco can accumulate more Cd2+ in its roots than natural, so that, it can decrease the concentration of Cd2+ in its leaves.  相似文献   

9.
10.
Nicotianamine and nicotianamine synthase (NAS) play key roles in iron nutrition in all higher plants. However, the mechanism underlying the regulation of NAS expression differs among plant species. Sequences homologous to iron deficiency-responsive elements (IDEs), i.e., cis-acting elements, are found on the promoters of these genes. We aimed to verify the interspecies compatibility of the Fe-deficiency response of NAS1 genes and understand the universal mechanisms that regulate their expression patterns in higher plants. Therefore, we introduced the graminaceous (Hordeum vulgare L. and Oryza sativa L.) NAS1 promoter::GUS into dicots (Nicotiana tabacum L. and Arabidopsis thaliana L.). Fe deficiency induced HvNAS1 expression in the shoots and roots when introduced into rice. HvNAS1 promoter::GUS and OsNAS1 promoter::GUS induced strong expression of GUS under Fe-deficient conditions in transformed tobacco. In contrast, these promoters only definitely functioned in Arabidopsis transformants. These results suggest that some Fe nutrition-related trans-factors are not compatible between graminaceous plants and Arabidopsis. HvNAS1 promoter::GUS induced GUS activity only in the roots of transformed tobacco under Fe-deficient conditions. On the other hand, OsNAS1 promoter::GUS induced GUS activity in both the roots and shoots of transformed tobacco under conditions of Fe deficiency. In tobacco transformants, the induction of GUS activity was induced earlier in the shoots than roots. These results suggest that the HvNAS1 and OsNAS1 promoters are compatible with Fe-acquisition-related trans-factors in the roots of tobacco and that the OsNAS1 promoter is also compatible with some shoot-specific Fe deficiency-related trans-factors in tobacco.  相似文献   

11.
12.
Wheat germin is a homopentameric 125 kD glycoprotein mainly localized in the cell wall of monocots, and is a specific marker of the onset of growth in germinating seeds. The major objective of this study was to examine the expression and oxalate oxidase activity of two wheat germin isoforms: gf-2.8 and gf-3.8 in transgenic tobacco plants. The transgenic tobacco plants were created with different constructs: 1) one entire excision of gf-2.8 germin promoter and two partially deleted promoter sequences were used to generate 3 independent GUS constructs; 2) the whole gf-2.8 gene construct and the fusion with CaMV 35S promoter; 3) one entire excision of gf-3.8 germin gene and one partially deleted gf-3.8 promoter sequences were used to generate 2 independent GUS constructs; 4) the whole gf-3.8 gene and the fusion with CaMV 35S promoter. Hormonal treatment (auxin and gibberellin), salt treatment, heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, As) and Al induced high GUS activity in tobacco transformed with entire and one partially deleted of the gf-2.8 gene. The immunoblotting confirmed induction of gf-2.8 gene and its product expressed oxalate oxidase activity in tobacco transformed with the entire gf-2.8 construct. Neither nicotinic acid, salicylic acid, heat shock, cold nor UV-C have enhanced significant GUS activity and germin gf-2.8 synhesis and activity. The germin gf-3.8 constructs with GUS gene and with the entire gf-3.8 sequences gave non-positive response with factors mentioned above. It has been demonstrated that gf-3.8 germin isoform is present as a monomer (Mr 25 kD). The non-active gf-3.8 protein is synthetised in transgenic tobacco plants only under control of the CaMV 35S promoter. Consequently, among two germin isoforms, only the gf-2.8 protein seems to be regulated by hormonal, salt and heavy metal factors. The gf-2.8 oxalate oxidase activity could be then involved in general stress-induced signalling in plant.  相似文献   

13.
A salicylic acid (SA)-inducible VCH3 promoter was recently identified from grapevine (Vitisarnurensis) that contains two inverse SA-responsive cis-acting elements and four W-boxes.To furtherdemonstrate the roles of these elements,four fragments with lengths from-1187,-892,-589,-276 to 7 bp were fused with the β-glucuronidase (GUS) reporter géne and transferred to Nicotiana tobacum,together with another four VCH3 promoter fragments with mutation in the two inverse SA-responsiveelements.The functions,of each promoter fragment were-examined by analysis of GUS activity in thetransgenic tobacco root treated with SA.Enhanced GUS activity was shown in the roots of transgenictobaccos with the VCH3 (-1187)-GUS construct containing two SA-responsive cis-acting elements andfour W-boxes.However,GUS activity directed by the VCH3 (-892)-GUS construct,containing one SA cis-acting element and four W-boxes,was reduced by up to 35% compared with that in tobaccos transformedwith the VCH3 (-1187)-GUS construct,indicating that the SA cis-acting element plays an important role inSA induction of the VCH3 promoter.Neither the m2VCH3 (-1187)-GUS nor the mVCH3 (-892)-GUSconstruct,with mutation on the SA-responsive elements,abolished the expression of GUS activity,demon-strating that the W-boxes in the VCH3 promoter are also involved in SA induction.Histochemical arialysis ofGUS activity directed by each of the eight VCH3 promoter fragments showed that GUS was expressedspecifically in vascular tissue.It was concluded that both the SA-responsive cis-acting elements and the W-boxes are important for the SA induction of the VCH3 promoter.This promoter might have a potential usein plant genetic engineering.  相似文献   

14.
15.
To investigate developmental regulation of wheat histone H3 gene expression, the H3 promoter, which has its upstream sequence to ?1711 (relative to the cap site as +1), was fused to the coding region of the gus A gene (?1711H3/GUS) and introduced into a monocot plant, rice. Detailed histochemical analysis revealed two distinct types of GUS expression in transgenic rice plants; one is cell division-dependent found in the apical meristem of shoots and roots and in young leaves, and another is cell division-independent detected in flower tissues including the anther wall and the pistil. In this study, replication-dependent expression occurring in non-dividing cells which undergo endoreduplication could not be discriminated from strict replication-independent expression. The observed expression pattern in different parts of roots suggested that the level of the H3/GUS gene expression is well correlated with activity of cell division in roots. To identify 5′ sequences of the H3 promoter necessary for an accurate regulation of the GUS expression, two constructs containing truncated promoters, ?908H3/GUS and ?185H3/GUS, were analyzed in transiently expressed protoplasts, stably transformed calli and transgenic plants. The results indicated that the region from ?909 to ?1711 contains the positive cis-acting element(s) and that the proximal promoter region (up to ?185) containing the conserved hexamer, octamer and nonamer motifs is sufficient to direct both cell division-dependent and -independent expression. The use of the meristem of roots regenerated from transformed calli for the analysis of cell division-dependent expression of plant genes is discussed.  相似文献   

16.
17.
18.
19.
Seo HM  Jung Y  Song S  Kim Y  Kwon T  Kim DH  Jeung SJ  Yi YB  Yi G  Nam MH  Nam J 《Biotechnology letters》2008,30(10):1833-1838
Most high-affinity phosphate transporter genes (OsPTs) in rice were highly induced in roots when phosphate was depleted. OsPT1, however, was highly expressed in primary roots and leaves regardless of external phosphate concentrations. This finding was confirmed histochemically using transgenic rice plants that express the GUS reporter gene under the control of the OsPT1 promoter, which exhibited high GUS activity even in the phosphate sufficient condition. Furthermore, transgenic rice plants overexpressing the OsPT1 gene accumulated almost twice as much phosphate in the shoots as did wild-type plants. As a result, transgenic plants had more tillers than did wild-type plants, which is a typical physiological indicator for phosphate status in rice.  相似文献   

20.
The cloning of a 465 bp fragment from the 5-flanking region of the gene encoding a cytosolic cyclophilin from periwinkle was achieved through inverse polymerase chain reaction. The DNA fragment was fused to a gusA-intron marker then introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Histochemical analysis of the transgenic shoot cultures demonstrated that the construct was able to drive GUS expression in stomata guard cells, but not in mesophyll cells when shoots were still attached to the callus from which they were initiated. In separated transgenic shoots and in seedlings, GUS was expressed in external and internal phloem and root hairs, respectively. GUS activity in transgenic tobacco seedlings was also investigated by fluorimetric assays. Treatments with NaCl or ABA decreased promoter activity whereas treatment with yeast extracts increased it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号