首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydroxyacetone (DHA) is an important ketose sugar, which is extensively used in the cosmetic, chemical, and pharmaceutical industries. DHA has been industrially produced by Gluconobacter oxydans with a high demand of oxygen. To improve the production of DHA, the gene vgb encoding Vitreoscilla hemoglobin (VHb) was successfully introduced into G. oxydans, where it was stably maintained, and expressed at about 76.0 nmol/g dry cell weight. Results indicated that the constitutively expressed VHb improved cell growth and DHA production in G. oxydans under different aeration conditions. Especially at low aeration rates, the VHb-expressing strain (VHb+) displayed 23.13% more biomass and 37.36% more DHA production than those of VHb-free strain (VHb) after 32 h fermentation in bioreactors. In addition, oxygen uptake rate (OUR) was also increased in VHb+ strain relative to the control strain during fermentation processes.  相似文献   

2.
Glucose catabolism by the obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H proceeds in two phases comprising rapid periplasmic oxidation of glucose to gluconate (phase I) and oxidation of gluconate to 2-ketogluconate or 5-ketogluconate (phase II). Only a small amount of glucose and part of the gluconate is taken up into the cells. To determine the roles of the pentose phosphate pathway (PPP) and the Entner–Doudoroff pathway (EDP) for intracellular glucose and gluconate catabolism, mutants defective in either the PPP (Δgnd, Δgnd zwf*) or the EDP (Δedd–eda) were characterized under defined conditions of pH 6 and 15 % dissolved oxygen. In the presence of yeast extract, neither of the two pathways was essential for growth with glucose. However, the PPP mutants showed a reduced growth rate in phase I and completely lacked growth in phase II. In contrast, the EDP mutant showed the same growth behavior as the reference strain. These results demonstrate that the PPP is of major importance for cytoplasmic glucose and gluconate catabolism, whereas the EDP is dispensable. Reasons for this difference are discussed.  相似文献   

3.
4.
利用改进的卡拉胶载体固定化Gluconobacter oxydans...   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
以氧化葡萄糖酸杆菌(Gluconobacter oxydans)NH-10基因组DNA为模板,扩增得到D-阿拉伯糖醇脱氢酶基因arDH,将其克隆到大肠杆菌表达载体JM109(DE3)中进行诱导表达。SDS-PAGE电泳分析ArDH的分子量约为30 kDa,是一个短链脱氢酶,既能催化D-阿拉伯糖醇氧化为D-木酮糖,又能催化D-木酮糖还原为D-阿拉伯糖醇。催化氧化反应时,对D-阿拉伯糖醇的Km为60.67 mmol/L,Vmax为0.803 U/mg;它能同时依赖于NAD+和NADP+,但是更加偏好辅酶NAD+;最适pH为12.0。还原反应对D-木酮糖的 Km为36.39 mmol/L,Vmax为1.71 U/mg;最优pH为7.0,最适温度均为30℃。  相似文献   

8.
F.P. Retief 《CMAJ》1986,134(8):873-875
The traditional clinical method, which has served medicine well for over 100 years, had its origins in the integration of physical examination with morbid anatomy in early 19th-century France. Now this method is showing signs of failing to meet some contemporary needs. In particular, there is no means for understanding the inner experience of patients. Previous models of a transformed method have not grappled with the problem of validation. Data on the inner experience of patients are not open to empiric validation in the same way as clinical data. The process of understanding the meaning of an illness is not, therefore, scientific in the conventional sense. There are, none the less, rigorous methods for validating the results of this form of inquiry, notably those of phenomenology. A transformed method should aim to understand the meaning of an illness for the patient as well as provide a clinical diagnosis. The transformation will require a change in the epistemology of medicine and an educational process that encourages reflection and growth of self-knowledge.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
2-酮基-D-葡萄糖酸是重要的抗氧化剂和食品添加剂——D-异抗坏血酸的重要前体。弱氧化葡糖酸杆菌(Gluconobacter suboxydans)具有丰富的周质空间氧化还原酶类,可将葡萄糖氧化为葡萄糖酸再氧化为2-酮基-D-葡萄糖酸。以提高2-酮基-D-葡萄糖酸的产量和减少副产物为目标,采用同源重组染色体修饰策略,将编码甘油脱氢酶的基因gldh置换为编码葡萄糖脱氢酶的基因gdh,将编码山梨醇脱氢酶的基因sdh置换为编码2-酮-D-葡萄糖酸脱氢酶的基因ga-2-dh。经PCR、酶活性显色及发酵产物HPLC检测验证表明:构建的工程菌株gdh和ga-2-dh基因被强化而gldh和sdh被敲除;使用10%的葡萄糖复合培养基,摇瓶发酵72h,工程菌2KGA3发酵液中没有副产物5-酮基-葡萄糖酸,2-酮基-D-葡萄糖酸的含量终浓度达到72.3 g/L,比野生菌株提高42.2g/L,工程菌和野生菌的2-D-KGA质量转化率分别为72.3%和30.1%,工程菌比野生菌提高1.4倍。构建获得的工程菌,不需要外加抗生素,可以保持稳定遗传,对于工业化规模生产具有一定优势,为获得可产业化显示的优势遗传资源打下了基础。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号