首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Ferulic acid is a renewable chemical found in lignocellulose from grasses such as wheat straw and sugarcane. Pseudomonas putida is able to liberate and metabolize ferulic acid from plant biomass. Deletion of the hydroxycinnamoyl‐CoA hydratase‐lyase gene (ech) produced a strain of P. putida unable to utilize ferulic and p‐coumaric acid, which is able to accumulate ferulic acid and p‐coumaric acid from wheat straw or sugar cane bagasse. Further engineering of this strain saw the replacement of ech with the phenolic acid decarboxylase padC, which converts p‐coumaric and ferulic acid into 4‐vinylphenol and the flavor agent 4‐vinylguaiacol, respectively. The engineered strain containing padC is able to generate 4‐vinylguaiacol and 4‐vinylphenol from media containing lignocellulose or Green Value Protobind lignin as feedstock, and does not require the addition of an exogenous inducer molecule. Biopolymerization of 4‐vinylguaiacol and 4‐vinylcatechol styrene products is also carried out, using Trametes versicolor laccase, to generate “biopolystyrene” materials on small scale.  相似文献   

2.
3.
4.
5.
Abstract

Ferulic acid is a fraction of the phenolics present in cereals such as rice and corn as a component of the bran. Substantial amounts of waste bran are generated by the grain processing industry and this can be valorized via extraction, purification and conversion of phenolics to value added chemical products. Alkaline alcohol based extracted and purified ferulic acid from corn bran was converted to vanillic acid using engineered Pseudomonas putida KT2440. The strain was engineered by rendering the vanAB gene nonfunctional and obtaining the mutant defective in vanillic acid metabolism. Biotransformation of ferulic acid using resting Pseudomonas putida KT2440 mutant cells resulted in more than 95?±?1.4% molar yield from standard ferulic acid; while the corn bran derived ferulic acid gave 87?±?0.38% molar yield. With fermentation time of less than 24?h the mutant becomes a promising candidate for the stable biosynthesis of vanillic acid at industrial scale.  相似文献   

6.
Lignocellulosic biomass is the most abundant bioresource on earth containing polymers mainly consisting of d ‐glucose, d ‐xylose, l ‐arabinose, and further sugars. In order to establish this alternative feedstock apart from applications in food, we engineered Pseudomonas putida KT2440 as microbial biocatalyst for the utilization of xylose and arabinose in addition to glucose as sole carbon sources. The d ‐xylose‐metabolizing strain P. putida KT2440_xylAB and l ‐arabinose‐metabolizing strain P. putida KT2440_araBAD were constructed by introducing respective operons from Escherichia coli. Surprisingly, we found out that both recombinant strains were able to grow on xylose as well as arabinose with high cell densities and growth rates comparable to glucose. In addition, the growth characteristics on various mixtures of glucose, xylose, and arabinose were investigated, which demonstrated the efficient co‐utilization of hexose and pentose sugars. Finally, the possibility of using lignocellulose hydrolysate as substrate for the two recombinant strains was verified. The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.  相似文献   

7.
Lignocellulose‐derived hydrolyzates typically display a high degree of variation depending on applied biomass source material as well as process conditions. Consequently, this typically results in variable composition such as different sugar concentrations as well as degree and the presence of inhibitors formed during hydrolysis. These key obstacles commonly limit its efficient use as a carbon source for biotechnological conversion. The gram‐negative soil bacterium Pseudomonas putida KT2440 is a promising candidate for a future lignocellulose‐based biotechnology process due to its robustness and versatile metabolism. Recently, P. putida KT2440_xylAB which was able to metabolize the hemicellulose (HC) sugars, xylose and arabinose, was developed and characterized. Building on this, the intent of the study was to evaluate different lignocellulose hydrolyzates as platform substrates for P. putida KT2440 as a model organism for a bio‐based economy. Firstly, hydrolyzates of different origins were evaluated as potential carbon sources by cultivation experiments and determination of cell growth and sugar consumption. Secondly, the content of major toxic substances in cellulose and HC hydrolyzates was determined and their inhibitory effect on bacterial growth was characterized. Thirdly, fed‐batch bioreactor cultivations with hydrolyzate as the carbon source were characterized and a diauxic‐like growth behavior with regard to different sugars was revealed. In this context, a feeding strategy to overcome the diauxic‐like growth behavior preventing accumulation of sugars is proposed and presented. Results obtained in this study represent a first step and proof‐of‐concept toward establishing lignocellulose hydrolyzates as platform substrates for a bio‐based economy.  相似文献   

8.
6-Hydroxynicotinate can be used for the production of drugs, pesticides and intermediate chemicals. Some Pseudomonas species were reported to be able to convert nicotinic acid to 6-hydroxynicotinate by nicotinate dehydrogenase. So far, previous reports on NaDH in Pseudomonas genus were confused and contradictory each other. Recently, Ashraf et al. reported an NaDH gene cloned from Eubacterium barkeri and suggested some deducted NaDH genes from other nine bacteria. But they did not demonstrate the activity of recombinant NaDH and did not mention NaDH gene in Pseudomonas. In this study we cloned the gene of NaDH, ndhSL, from Pseudomonas putida KT2440. NdhSL in P. putida KT2440 is composed of two subunits. The small subunit contains [2Fe2S] iron sulfur domain, while the large subunit contains domains of molybdenum cofactor and cytochrome c. Expression of recombinant ndhSL in P. entomophila L48, which lacks the ability to produce 6-hydroxynicotinate, enabled the resting cell and cell extract of engineering P. entomophila L48 to hydroxylate nicotinate. Gene knockout and recovery studies further confirmed the ndhSL function.  相似文献   

9.
The success of bioprocess implementation relies on the ability to achieve high volumetric productivities and requires working with high‐cell‐density cultivations. Elevated atmospheric pressure might constitute a promising tool for enhancing the oxygen transfer rate (OTR), the major growth‐limiting factor for such cultivations. However, elevated pressure and its effects on the cellular environment also represent a potential source of stress for bacteria and may have negative effects on product formation. In order to determine whether elevated pressure can be applied for enhancing productivity in the case of medium‐chain‐length polyhydroxyalkanoate (mcl‐PHA) production by Pseudomonas putida KT2440, the impact of a pressure of 7 bar on the cell physiology was assessed. It was established that cell growth was not inhibited by this pressure if dissolved oxygen tension (DOT) and dissolved carbon dioxide tension (DCT) were kept below ~30 and ~90 mg L?1, respectively. Remarkably, a little increase of mcl‐PHA volumetric productivity was observed under elevated pressure. Furthermore, the effect of DCT, which can reach substantial levels during high‐cell‐density processes run under elevated pressure, was investigated on cell physiology. A negative effect on product formation could be dismissed since no significant reduction of mcl‐PHA content occurred up to a DCT of ~540 mg L?1. However, specific growth rate exhibited a significant decrease, indicating that successful high‐cell‐density processes under elevated pressure would be restricted to chemostats with low dilution rates and fed‐batches with a small growth rate imposed during the final part. This study revealed that elevated pressure is an adequate and efficient way to enhance OTR and mcl‐PHA productivity. We estimate that the oxygen provided to the culture broth under elevated pressure would be sufficient to triple mcl‐PHA productivity in our chemostat system from 3.4 (at 1 bar) to 11 g L?1 h?1 (at 3.2 bar). Biotechnol. Bioeng. 2012; 109:451–461. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Functionalized medium-chain-length polyhydroxyalkanoates (mclPHAs) have gained much interest in research on biopolymers because of their ease of chemical modification. Tailored olefinic mclPHA production from mixtures of octanoic acid and 10-undecenoic acid was investigated in batch and dual (C,N) nutrient limited chemostat cultures of Pseudomonas putida GPo1 (ATCC 29347). In a batch culture, where P. putida GPo1 was grown on a mixture of octanoic acid (58 mol%) and 10-undecenoic acid (42 mol%), it was found that the fraction of aliphatic monomers was slightly lower in mclPHA produced during exponential growth than during late stationary phase. Thus, the total monomeric composition changed over time indicating different kinetics for the two carbon substrates. Chemostat experiments showed that the dual (C,N) nutrient limited growth regime (DNLGR) for 10-undecenoic acid coincided with the one for octanoic acid. Five different chemostats on equimolar mixtures of octanoic acid and 10-undecenoic acid within the DNLGR revealed that the monomeric composition of mclPHA was not a function of the carbon to nitrogen (C(0)/N(0)) ratio in the feed medium but rather of the dilution rate. The fraction of aliphatic monomers in the accumulated mclPHA was slightly lower at high dilution rates and increased towards low dilution rates, again indicating different kinetics for the two carbon substrates in P. putida GPo1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号