首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aggregates are the biologically active units of endotoxin   总被引:7,自引:0,他引:7  
For the elucidation of the very early steps of immune cell activation by endotoxins (lipopolysaccharide, LPS) leading to the production and release of proinflammatory cytokines the question concerning the biologically active unit of endotoxins has to be addressed: are monomeric endotoxin molecules able to activate cells or is the active unit represented by larger endotoxin aggregates? This question has been answered controversially in the past. Inspired by the observation that natural isolates of lipid A, the lipid moiety of LPS harboring its endotoxic principle, from Escherichia coli express a higher endotoxic activity than the same amounts of the synthetic E. coli-like hexaacylated lipid A (compound 506), we looked closer at the chemical composition of natural isolates. We found in these isolates that the largest fraction was hexaacylated, but also significant amounts of penta- and tetraacylated molecules were present that, when administered to human mononuclear cells, may antagonize the induction of cytokines by biologically active hexaacylated endotoxins. We prepared separate aggregates of either compound 506 or 406 (tetraacylated precursor IVa), mixed at different molar ratios, and mixed aggregates containing both compounds in the same ratios. Surprisingly, the latter mixtures showed higher endotoxic activity than that of the pure compound 506 up to an admixture of 20% of compound 406. Similar results were obtained when using various phospholipids instead of compound 406. These observations can only be understood by assuming that the active unit of endotoxins is the aggregate. We further confirmed this result by preparing monomeric lipid A and LPS by a dialysis procedure and found that, at the same concentrations, only the aggregates were biologically active, whereas the monomers showed no activity.  相似文献   

2.
An understanding of details of the interaction mechanisms of bacterial endotoxins (lipopolysaccharide, LPS) with the oxygen transport protein hemoglobin is still lacking, despite its high biological relevance. Here, a biophysical investigation into the endotoxin:hemoglobin interaction is presented which comprises the use of various rough mutant LPS as well as free lipid A; in addition to the complete hemoglobin molecule from fetal sheep extract, also the partial structure alpha-chain and the heme-free sample are studied. The investigations comprise the determination of the gel-to-liquid crystalline phase behaviour of the acyl chains of LPS, the ultrastructure (type of aggregate structure and morphology) of the endotoxins, and the incorporation of the hemoglobins into artificial immune cell membranes and into LPS. Our data suggest a model for the interaction between Hb and LPS in which hemoglobins do not react strongly with the hydrophilic or with the hydrophobic moiety of LPS, but with the complete endotoxin aggregate. Hb is able to incorporate into LPS with the longitudinal direction parallel to the lipid A double-layer. Although this does not lead to a strong disturbance of the LPS acyl chain packing, the change of the curvature leads to a slightly conical molecular shape with a change of the three-dimensional arrangement from unilamellar into cubic LPS aggregates. Our previous results show that cubic LPS structures exhibit strong endotoxic activity. The property of Hb on the physical state of LPS described here may explain the observation of an increase in LPS-mediating endotoxicity due to the action of Hb.  相似文献   

3.
Lipopolysaccharides (LPS; endotoxin) activate immunocompetent cells of the host via a transmembrane signaling process. In this study, we investigated the function of the LPS-binding protein (LBP) in this process. The cytoplasmic membrane of the cells was mimicked by lipid liposomes adsorbed on mica, and the lateral organization of LBP in these membranes and its interaction with LPS aggregates were characterized by atomic force microscopy. Using cantilever tips functionalized with anti-LBP antibodies, single LBP molecules were localized in the membrane at low concentrations. At higher concentrations, LBP formed clusters of several molecules and caused cross-linking of lipid bilayers. The addition of LPS to LBP-containing liposomes led to the formation of LPS domains in the membranes, which could be inhibited by anti-LBP antibodies. Thus, LBP mediates the fusion of lipid membranes and LPS aggregates.  相似文献   

4.
The mechanisms involved in cellular activation and damage by bacterial endotoxins are not completely defined. In particular, there is little information about possible intracellular targets of endotoxins. Recently, the participation of a microtubule associated protein in endotoxin actions on macrophages has been suggested. In the present work, we have studied the effect ofE. coli lipopolysaccharide on the polymerization of microtubular proteinin vitro. Electrophoretic analysis of the polymerization mixtures showed that the endotoxin inhibited the polymerization when present at high concentrations. At lower concentrations, LPS selectively displaced the microtubule associated protein MAP-2 from the polymerized microtubules. Electron microscopy showed that LPS binds to microtubules of tubulin+MAPs and to microtubules of purified tubulin (without MAPs) polymerized with taxol. Gel filtration experiments confirmed the binding of LPS to tubulin, and by ligand blot assays an interaction LPS — MAP-2 was detected. The ability of LPS to interact with microtubular proteins suggests a possible participation of microtubules on the cellular effects of endotoxins.  相似文献   

5.
Lipopolysaccharide (LPS, endotoxin) is an important structural constituent of the membrane of gram-negative bacteria with a wide range of biological effects. It can activate blood platelets. The purpose of present study was to determine the direct effect of endotoxins from Proteus mirabilis, differing significantly in their composition, on the generation of superoxide radicals and thiobarbituric acid reactive substances (TBARS) in blood platelets. Superoxide radicals were measured by means of superoxide dismutase-inhibitable reduction of cytochrome C. The TBARS determination (malonyldialdehyde) was used as a marker of endogenous arachidonate metabolism and thromboxane A2 synthesis. Results demonstrate that three endotoxins (LPS S1959, LPS R110, LPS R45) after 2 min of action, even at the lowest concentration (0.03 microg/10(8) platelets) stimulated the generation of TBARS and release of superoxide radicals. All LPS contain lipid A as a component but differ in their chemical composition in the polysaccharide part. It is suggested that the observed effects of LPS on blood platelets are attributable to their lipid A portion.  相似文献   

6.
The interaction of bacterial endotoxins [lipopolysaccharide (LPS) and the 'endotoxic principle' lipid A], with high-density lipoprotein (HDL) from serum was investigated with a variety of physical techniques and biological assays. HDL exhibited an increase in the gel to liquid crystalline phase transition temperature Tc and a rigidification of the acyl chains of the endotoxins as measured by Fourier-transform infrared spectroscopy and differential scanning calorimetry. The functional groups of the endotoxins interacting with HDL are the phosphates and the diglucosamine backbone. The finding of phosphates as target groups is in accordance to measurements of the electrophoretic mobility showing that the zeta potential decreases from -50 to -60 mV to -20 mV at binding saturation. The importance of the sugar backbone as further target structure is in accordance with the remaining negative potential and competition experiments with polymyxin B (PMB) and phase transition data of the system PMB/dephosphorylated LPS. Furthermore, endotoxin binding to HDL influences the secondary structure of the latter manifesting in a change from a mixed alpha-helical/beta-sheet structure to a predominantly alpha-helical structure. The aggregate structure of the lipid A moiety of the endotoxins as determined by small-angle X-ray scattering shows a change of a unilamellar/inverted cubic into a multilamellar structure in the presence of HDL. Fluorescence resonance energy transfer data indicate an intercalation of pure HDL, and of [LPS]-[HDL] complexes into phospholipid liposomes. Furthermore, HDL may enhance the lipopolysaccharide-binding protein-induced intercalation of LPS into phospholipid liposomes. Parallel to these observations, the LPS-induced cytokine production of human mononuclear cells and the reactivity in the Limulus test are strongly reduced by the addition of HDL. These data allow to develop a model of the [endotoxin]/[HDL] interaction.  相似文献   

7.
A highly purified bacterial lipopolysaccharide (LPS) preparation was exposed in water to megadoses of ionizing radiation from a 60Co source. As evidenced by electrophoresis, the radiation treatment progressively degraded the lipopolysaccharide molecules by removing first the O-side chain units and then components of the R-core. Chemical analysis of the irradiated (LPS) preparations showed that, in accord with the structural changes, the most profound effects of ionizing radiation occurred in the hydrophilic oligo/polysaccharide moieties (R-core and O-side chain). Progressively higher doses of radiation degraded the simple sugars in decreasing order of galactose, galactosamine, glucosamine, glucose, and heptose. The R-core component 2-keto-3-deoxyoctonate was the most "resistant" sugar derivative to ionizing radiation. Due to its central position in the LPS aggregates in water, even at comparatively high doses of radiation the hydrophobic lipid A moiety of endotoxin was less affected than the sugar components. Of the fatty acids of lipid A, however, either partial conversion of beta-hydroxymyristic acid into myristic acid or selective loss of the former occurred. The observed structural and chemical changes of LPS are consistent with the effect of active oxygen radicals of radiolysis. In addition, the extensive physicochemical changes explain the altered biological reactivity of radiation-treated endotoxins.  相似文献   

8.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

9.
The basis of the biologic responses of C3H/HeJ mice to endotoxin administration in relation to the structural linkages in the lipid A portion of the lipopolysaccharide (LPS) of Pseudomonas aeruginosa and Escherichia coli were investigated. P. aeruginosa LPS was found to be immunogenic, mitogenic, and toxic, but not lethal, in C3H/HeJ mice. The observed mitogenicity in spleen cells was directed toward immunoglobulin- (Ig) bearing cells, was present in response to isolated and solubilized lipid A, and was inhibitable by polymixin B. The P. aeruginosa LPS was chemically analyzed in order to define its composition and exclude the presence of contaminating proteins being responsible for the biologic responses of C3H/HeJ mice that were observed. Structural analysis of the linkages of the fatty acids to the glucosamine backbone in the lipid A of P. aeruginosa and E. coli revealed similarities in terms of the ratio of hydroxy fatty acids to straight chain fatty acids and the way in which these 2 types of fatty acids were linked to the backbone. Differences were seen in the carbon chain length of the fatty acid substituents, and the substituent on the hydroxy fatty acid that is directly ester linked to the glucosamine backbone. These data indicate that the refractivity of C3H/HeJ mice to the biologic effects after the administration of Gram-negative endotoxins may be limited to enterobacterial LPS. Those differences we found in the chain length and/or linkages of the fatty acid substituents in the lipid A portion of the LPS between P. aeruginosa and E. coli may be sufficient to render C3H/HeJ mice responsive to the biologic effects of nonenterobacterial endotoxins.  相似文献   

10.
The interaction of purified alpha alpha cross-linked hemoglobin (alpha alpha Hb) with a pentaacylated mutant lipopolysaccharide (pLPS) and the corresponding lipid A (pLA) was studied biophysically and the effects correlated with data from biological assays, i.e. cytokine induction (tumor necrosis factor-alpha) in human mononuclear cells and the Limulus amebocyte lysate assay. Fourier transform infrared spectroscopic and Zeta-Sizer experiments indicated an electrostatic as well as a non-electrostatic binding of alpha alpha Hb to the hydrophilic and to the hydrophobic moieties of the endotoxins with an increase of the inclination angle of the pLA backbone, with respect to the membrane surface, from 25 degrees to more than 50 degrees. Small angle synchrotron radiation x-ray diffraction measurements indicated a reorientation of the lipid A aggregates from a multilamellar into a cubic structure as a result of alpha alpha Hb interaction. Thus, in the absence of alpha alpha Hb, the molecular shape of the pentaacyl samples was cylindrical with a moderate inclination of the diglucosamine backbone, whereas, in the presence of the protein, the shape was conical, and the inclination angle was high. The cytokine-inducing capability in human mononuclear cells, negligible for the pure pentaacylated compounds, increased markedly in the presence of alpha alpha Hb in a concentration-dependent manner. In the Limulus assay, the pentaacylated samples were active a priori, and their activity was enhanced following binding to alpha alphaHb, at least at the highest protein concentrations. The data can be understood in the light of a reaggregation of the endotoxins because of alpha alpha Hb binding, with the endotoxin backbones then readily accessible for serum and membrane proteins. By using fluorescence resonance energy transfer spectroscopy, an uptake of the endotoxin-Hb complex into phospholipid liposomes was observed, which provides a basis for cell activation.  相似文献   

11.
Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.  相似文献   

12.
13.
The acyl chain packing of various endotoxins and phospholipids was monitored via the main wide-angle reflection between 0.410 and 0.460 nm by wide-angle X-ray scattering (WAXS) and via the absorption band of the symmetric stretching vibration of the methylene groups v(s)(CH(2)) around 2849 to 2853 cm(-1) by Fourier-transform infrared spectroscopy. The lipids investigated included various rough mutant (R) and smooth form (S) lipopolysaccharides (LPS) differing in the length of the sugar portion, lipid A, the "endotoxic principle" of LPS, and various saturated and unsaturated phospholipids with different head groups under a near physiological (>/=85%) water content. The packing density of the saturated endotoxin acyl chains is lower than those of saturated phospholipids but similar to those of monounsaturated phospholipids, each in the gel phase. The hydrophobic moiety of endotoxins thus exhibits significant conformational disorder already in the gel phase. The acyl chain packing of the endotoxins decreases with increasing length of the sugar chain lengths, which seems to be relevant to the observed differences in biological activity. For Re-LPS with different counterions (salt forms), in the presence of externally added cations or at reduced water content (50%), no change of the acyl chain packing density is deduced in the X-ray data, although the FT-IR data indicate its increase. The position of the v(s)(CH(2)) vibration is, thus, only a relative measure of lipid order, in particular when lipids with different head groups and in the presence of external agents are compared.  相似文献   

14.
The neutralization of endotoxin structures such as the active 'endotoxic principle' lipid A by suitable compounds has been shown to be a key step in the treatment of infectious diseases, in particular in the case of Gram-negative bacteria which frequently may lead to the septic shock syndrome. An effective antimicrobial peptide, originally found in the skin of an African frog, is magainin 2. Here, the interaction of magainin 2-amide and a peptide derived thereof, M2V, with chemically defined and homogeneous hexaacyl and heptaacyl lipids A isolated from LPS of Erwinia carotovora, was investigated. By using Fourier-transform infrared spectroscopy, the gel to liquid crystalline phase transition of the acyl chains of lipid A and the conformation of their phosphate groups due to peptide binding was investigated. The former parameter was also determined by using differential scanning calorimetry. The electrophoretic mobility of lipid A aggregates under the influence of the peptides was studied to determine the Zeta potential, and small-angle X-ray scattering was applied for the elucidation of the types of aggregate structures in the absence and presence of the peptides. The lipid A-induced cytokine production in human mononuclear cells shows that the ability of the two peptides to inhibit a tumor necrosis factor-alpha production correlates with characteristic changes of the biophysical parameters. These are much stronger expressed for the peptide M2V than for magainin 2-amide, which apparently is connected with the higher number of positive as well as more hydrophobic amino acids, leading to a stronger amphiphilicity necessary to neutralize the amphiphilic lipid A aggregates.  相似文献   

15.
The neutralization of endotoxin structures such as the active ‘endotoxic principle’ lipid A by suitable compounds has been shown to be a key step in the treatment of infectious diseases, in particular in the case of Gram-negative bacteria which frequently may lead to the septic shock syndrome. An effective antimicrobial peptide, originally found in the skin of an African frog, is magainin 2. Here, the interaction of magainin 2-amide and a peptide derived thereof, M2V, with chemically defined and homogeneous hexaacyl and heptaacyl lipids A isolated from LPS of Erwinia carotovora, was investigated. By using Fourier-transform infrared spectroscopy, the gel to liquid crystalline phase transition of the acyl chains of lipid A and the conformation of their phosphate groups due to peptide binding was investigated. The former parameter was also determined by using differential scanning calorimetry. The electrophoretic mobility of lipid A aggregates under the influence of the peptides was studied to determine the Zeta potential, and small-angle X-ray scattering was applied for the elucidation of the types of aggregate structures in the absence and presence of the peptides. The lipid A-induced cytokine production in human mononuclear cells shows that the ability of the two peptides to inhibit a tumor necrosis factor-α production correlates with characteristic changes of the biophysical parameters. These are much stronger expressed for the peptide M2V than for magainin 2-amide, which apparently is connected with the higher number of positive as well as more hydrophobic amino acids, leading to a stronger amphiphilicity necessary to neutralize the amphiphilic lipid A aggregates.  相似文献   

16.
The interaction between endotoxins-free lipid A and various lipopolysaccharide (LPS) chemotypes with different sugar chain lengths-and the polycationic peptides polymyxin B and polymyxin nonapeptide has been investigated by isothermal titration calorimetry between 20 and 50 degrees C. The results show a strong dependence of the titration curves on the phase state of the endotoxins. In the gel phase (<30 degrees C for LPS and <45 degrees C for lipid A), an endothermic reaction is observed, for which the driving force is an entropically driven endotoxin-polymyxin interaction, due to disruption of the ordered water structure and cation assembly in the lipid A backbone and adjacent molecules. In the liquid crystalline phase (>35 degrees C for LPS and >47 degrees C for lipid A) an exothermic reaction takes place, which is mainly due to the strong electrostatic interaction of the polymyxins with the negative charges of the endotoxins, i.e., the entropic change DeltaS is much lower than in the gel phase. For endotoxins with short sugar chains (lipid A, LPS Re, LPS Rc) the stoichiometry of the polymyxin binding corresponds to pure charge neutralization; for the compounds with longer sugar chains (LPS Ra, LPS S-form) this is no longer valid. This can be related to the lower susceptibility of the corresponding bacterial strains to antibiotics.  相似文献   

17.
The fatty acid distribution of Aerobacter aerogenes was studied by comparing the fatty acid composition of the lipoidal component of the endotoxin (lipid A) with the fatty acids of the readily extractable native lipids and total cellular fatty acids. The results for total cellular fatty acids and readily extractable native lipids were generally similar, but both quantitative and qualitative differences exist. In addition, profound differences between these two fractions and lipid A were observed. These differences included fewer fatty acids and lower concentrations of unsaturated and cyclopropane fatty acids in the lipid A. Hydroxy fatty acids persisted in the lipid A. The significance of these differences with respect to mammalian toxicity of endotoxins is discussed.  相似文献   

18.
To explore the mechanism by which certain bacterial lipopolysaccharides (LPS) enhance platelet stimulation by aggregated IgG, we studied potential interactions between the two ligands. Lipid A or the lipid A-rich LPS from Salmonella minnesota R595 (LPS R595) selectively increased the sedimentation of aggregated rather than monomer IgG in sucrose density gradients. Insolubilized IgG aggregates adsorbed LPS R595 from solution. These two experiments suggested binding of IgG aggregates to LPS R595 or lipid A and this was confirmed by isopycnic density gradient ultracentrifugation studies. The presence of R595 LPS shifted the equilibrium density profile of aggregated IgG from its usual equilibrium density at 1.30 g/ml to a new position superimposable with that of the LPS R595. The possibility that a selective binding of IgG aggregates to LPS may represent a fundamental mechanism of the action of LPS on cellular mediation systems is proposed.  相似文献   

19.
The interaction of hemoglobin (Hb) with endotoxins [i.e. with enterobacterial deep rough mutant lipopolysaccharide (LPS) Re and the "endotoxic principle" of LPS, lipid A] was investigated using a variety of physical techniques and with two biological assays, tumor necrosis factor (TNF)-alpha induction in human mononuclear cells and the Limulus amebocyte lysate (LAL) assay. Fourier-transform IR-spectroscopic experiments indicate nonelectrostatic binding to the hydrophobic moiety with a slight rigidification of the lipid A acyl chains, and an increase in the inclination of the lipid A backbone with respect to the membrane surface from 35 degrees to more than 40 degrees due to Hb binding, but no change of the predominantly alpha-helical secondary structures of Hb due to LPS binding. From isothermal titration calorimetry, the molar [Hb] : [endotoxin] binding ratio lies between 1 : 3 and 1 : 5 molar. Synchrotron radiation X-ray diffraction measurements indicate a reorientation of the lipid A aggregates from one cubic structure to another, the final structure belonging to space group Q224. The LPS-induced TNF-alpha production of mononuclear cells is enhanced by Hb, whereas in the LAL assay an LPS concentration-dependent increase or decrease was observed. Although a detailed mechanism of action cannot be given, the enhancement of LPS bioactivity can be understood in the light of the previously presented conformational concept; Hb induces an increase in the conical shape of the lipid A moiety of LPS, higher cross-section of the hydrophobic than the hydrophilic part, and of the inclination angle of the diglucosamine backbone with respect to the direction of the acyl chains.  相似文献   

20.
For the study of sequence or structure requirement of short peptides for endotoxin binding, and to search for potential endotoxin antagonists, biopanning was carried out on a phage-displayed random dodecapeptide library against immobilized lipopolysaccharide (LPS) or lipid A (LA), the core toxic portion of LPS. Specific binding of selected phage-displayed peptides to LPS/LA was confirmed by surface plasmon resonance (SPR) analysis. These peptides are rich in basic and hydrophobic amino acids, especially histidine, proline and tryptophan, highlighting apparent amphiphilicity and bacterial membrane activity. These dodecapeptide sequences have no predictable secondary structure in solution, indicating the importance of a random structure before their interaction with LPS/LA. Sequence alignment reveals various potential secondary structures with these selected peptides, which contain specific signature motifs such as b(p)hb(p)hb(p), bbbb, hhhh (b-basic, p-polar, h-hydrophobic residue), capable of binding LPS/LA. However, none of these peptides exhibit a significant calculated structural amphiphilicity while assuming a secondary structure. This study suggests that for these short dodecapeptides to bind LPS/LA, the potential for their structural adaptation is more important than an amphipathic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号