共查询到20条相似文献,搜索用时 15 毫秒
1.
Chakrabortee S Tripathi R Watson M Schierle GS Kurniawan DP Kaminski CF Wise MJ Tunnacliffe A 《Molecular bioSystems》2012,8(1):210-219
The broad family of LEA proteins are intrinsically disordered proteins (IDPs) with several potential roles in desiccation tolerance, or anhydrobiosis, one of which is to limit desiccation-induced aggregation of cellular proteins. We show here that this activity, termed molecular shield function, is distinct from that of a classical molecular chaperone, such as HSP70 - while HSP70 reduces aggregation of citrate synthase (CS) on heating, two LEA proteins, a nematode group 3 protein, AavLEA1, and a plant group 1 protein, Em, do not; conversely, the LEA proteins reduce CS aggregation on desiccation, while HSP70 lacks this ability. There are also differences in interaction with client proteins - HSP70 can be co-immunoprecipitated with a polyglutamine-containing client, consistent with tight complex formation, whereas the LEA proteins can not, although a loose interaction is observed by F?rster resonance energy transfer. In a further exploration of molecular shield function, we demonstrate that synthetic polysaccharides, like LEA proteins, are able to reduce desiccation-induced aggregation of a water-soluble proteome, consistent with a steric interference model of anti-aggregation activity. If molecular shields operate by reducing intermolecular cohesion rates, they should not protect against intramolecular protein damage. This was tested using the monomeric red fluorescent protein, mCherry, which does not undergo aggregation on drying, but the absorbance and emission spectra of its intrinsic fluorophore are dramatically reduced, indicative of intramolecular conformational changes. As expected, these changes are not prevented by AavLEA1, except for a slight protection at high molar ratios, and an AavLEA1-mCherry fusion protein is damaged to the same extent as mCherry alone. A recent hypothesis proposed that proteomes from desiccation-tolerant species contain a higher degree of disorder than intolerant examples, and that this might provide greater intrinsic stability, but a bioinformatics survey does not support this, since there are no significant differences in the degree of disorder between desiccation tolerant and intolerant species. It seems clear therefore that molecular shield function is largely an intermolecular activity implemented by specialist IDPs, distinct from molecular chaperones, but with a role in proteostasis. 相似文献
2.
Proteins in general consist not only of globular structural domains (SDs), but also of intrinsically disordered regions (IDRs), i.e. those that do not assume unique three-dimensional structures by themselves. Although IDRs are especially prevalent in eukaryotic proteins, the functions are mostly unknown. To elucidate the functions of IDRs, we first divided eukaryotic proteins into subcellular localizations, identified IDRs by the DICHOT system that accurately divides entire proteins into SDs and IDRs, and examined charge and hydropathy characteristics. On average, mitochondrial proteins have IDRs more positively charged than SDs. Comparison of mitochondrial proteins with orthologous prokaryotic proteins showed that mitochondrial proteins tend to have segments attached at both N and C termini, high fractions of which are IDRs. Segments added to the N-terminus of mitochondrial proteins contain not only signal sequences but also mature proteins and exhibit a positive charge gradient, with the magnitude increasing toward the N-terminus. This finding is consistent with the notion that positively charged residues are added to the N-terminus of proteobacterial proteins so that the extended proteins can be chromosomally encoded and efficiently transported to mitochondria after translation. By contrast, nuclear proteins generally have positively charged SDs and negatively charged IDRs. Among nuclear proteins, DNA-binding proteins have enhanced charge tendencies. We propose that SDs in nuclear proteins tend to be positively charged because of the need to bind to negatively charged nucleotides, while IDRs tend to be negatively charged to interact with other proteins or other regions of the same proteins to avoid premature proteasomal degradation. 相似文献
3.
4.
Intrinsically disordered proteins may escape unwanted interactions via functional misfolding 总被引:1,自引:0,他引:1
Uversky VN 《Biochimica et biophysica acta》2011,1814(5):693-712
Intrinsically disordered proteins are highly abundant in nature and play a number of crucial roles in the living cells. They are commonly involved in a wide range of intermolecular interactions, and some of them possess remarkable binding promiscuity, being able to interact specifically with structurally unrelated partners. Although they do not have well-folded structure, some IDPs are known to fold at binding to their specific partners. IDPs are highly pliable and one IDP can form an array of unrelated structures being bound to different partners. It is believed that many IDPs, being mostly disordered, have transient elements of the preformed secondary structure which are highly interaction prone and is used by IDPs for binding to specific partners. The overall disordered nature of IDPs, their high conformational dynamics and flexibility, the presence of sticky preformed binding elements, and their ability to morph into differently-shaped bound configurations raised a very important question about the mechanisms preventing IDPs from unwanted interactions with non-native partners. In this review, a concept of functional misfolding is introduced. Accumulated to date data on the conformational behavior and fine structure of several IDPs suggest that the preformed binding elements might be involved in a set of non-native intramolecular interactions. In other words, there is a chance that a polypeptide chain misfolds to sequester the preformed elements inside the non-interactive or less-interactive cage, therefore preventing these elements from the unnecessary and unwanted interactions with non-native binding partners. 相似文献
5.
Bin Xue Celeste J. Brown A. Keith Dunker Vladimir N. Uversky 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(4):725-738
Proteins of the p53 family are expressed in vertebrates and in some invertebrate species. The main function of these proteins is to control and regulate cell cycle in response to various cellular signals, and therefore to control the organism's development. The regulatory functions of the p53 family members originate mostly from their highly-conserved and well-structured DNA-binding domains. Many human diseases (including various types of cancer) are related to the missense mutations within this domain. The ordered DNA-binding domains of the p53 family members are surrounded by functionally important intrinsically disordered regions. In this study, substitution rates and propensities in different regions of p53 were analyzed. The analyses revealed that the ordered DNA-binding domain is conserved, whereas disordered regions are characterized by high sequence diversity. This diversity was reflected both in the number of substitutions and in the types of substitutions to which each amino acid was prone. These results support the existence of a positive correlation between protein intrinsic disorder and sequence divergence during the evolutionary process. This higher sequence divergence provides strong support for the existence of disordered regions in p53 in vivo for if they were structured, they would evolve at similar rates as the rest of the protein. 相似文献
6.
A systematic survey of intrinsically disordered (ID) regions was carried out in 2109 human plasma membrane proteins with full assignment of the transmembrane topology with respect to the lipid bilayer. ID regions with 30 consecutive residues or more were detected in 41.0% of the human proteins, a much higher percentage than the corresponding figure (4.7%) for inner membrane proteins of Escherichia coli. The domain organization of each of the membrane protein in terms of transmembrane helices, structural domains, ID, and unassigned regions as well as the distinction of inside or outside of the cell was determined. Long ID regions constitute 13.3 and 3.5% of the human plasma membrane proteins on the inside and outside of the cell, respectively, showing that they preferentially occur on the cytoplasmic side. We interpret this phenomenon as a reflection of the general scarcity of ID regions on the extracellular side and their relative abundance on the cytoplasmic side in multicellular eukaryotic organisms. 相似文献
7.
8.
9.
10.
Babu MM van der Lee R de Groot NS Gsponer J 《Current opinion in structural biology》2011,21(3):432-440
Intrinsically disordered proteins (IDPs) are enriched in signaling and regulatory functions because disordered segments permit interaction with several proteins and hence the re-use of the same protein in multiple pathways. Understanding IDP regulation is important because altered expression of IDPs is associated with many diseases. Recent studies show that IDPs are tightly regulated and that dosage-sensitive genes encode proteins with disordered segments. The tight regulation of IDPs may contribute to signaling fidelity by ensuring that IDPs are available in appropriate amounts and not present longer than needed. The altered availability of IDPs may result in sequestration of proteins through non-functional interactions involving disordered segments (i.e., molecular titration), thereby causing an imbalance in signaling pathways. We discuss the regulation of IDPs, address implications for signaling, disease and drug development, and outline directions for future research. 相似文献
11.
12.
In living cells protein-DNA interactions are fundamental processes. Here, we compare the 3D structures of several DNA-binding proteins frequently determined with and without attached DNA. We studied the global structure (backbone-traces) as well as the local structure (binding sites) by comparing pair-wise the related atoms. The DNA-interaction sites of uncomplexed proteins show conspicuously high local structural flexibility. Binding to DNA results in specific local conformations, which are clearly distinct from the unbound states. The adaptation of the protein's binding site to DNA can never be described by the lock and key model but in all cases by the induced fit model. Conformational changes in the seven protein backbone traces take place in different ways. Two of them dock onto DNA without a significant change, while the other five proteins are characterized by a backbone conformation change caused by DNA docking. In the case of three proteins of the latter group the DNA-complexed conformation also occurs in a few uncomplexed structures. This behavior can be described by a conformational ensemble, which is narrowed down by DNA docking until only one single DNA-complexed conformation occurs. Different docking models are discussed and each of the seven proteins is assigned to one of them. 相似文献
13.
Uversky VN 《The international journal of biochemistry & cell biology》2011,43(8):1090-1103
The ideas that proteins might possess specific functions without being uniquely folded into rigid 3D-structures and that these floppy polypeptides might constitute a noticeable part of any given proteome would have been considered as a preposterous fiction 15 or even 10 years ago. The situation has changed recently, and the existence of functional yet intrinsically disordered proteins and regions has become accepted by a significant number of protein scientists. These fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting and attractive targets for modern protein research. This review summarizes some of the major discoveries and breakthroughs in the field of intrinsic disorder by representing related concepts and definitions. 相似文献
14.
15.
16.
Aeling KA Steffen NR Johnson M Hatfield GW Lathrop RH Senear DF 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2007,4(1):117-125
Proteins that bind to specific locations in genomic DNA control many basic cellular functions. Proteins detect their binding sites using both direct and indirect recognition mechanisms. Deformation energy, which models the energy required to bend DNA from its native shape to its shape when bound to a protein, has been shown to be an indirect recognition mechanism for one particular protein, integration host factor (IHF). This work extends the analysis of deformation to two other DNA-binding proteins, CRP and SRF, and two endonucleases, I-Crel and I-Ppol. Known binding sites for all five proteins showed statistically significant differences in mean deformation energy as compared to random sequences. Binding sites for the three DNA-binding proteins and one of the endonucleases had mean deformation energies lower than random sequences. Binding sites for I-Ppol had mean deformation energy higher than random sequences. Classifiers that were trained using the deformation energy at each base pair step showed good cross-validated accuracy when classifying unseen sequences as binders or nonbinders. These results support DNA deformation energy as an indirect recognition mechanism across a wider range of DNA-binding proteins. Deformation energy may also have a predictive capacity for the underlying catalytic mechanism of DNA-binding enzymes 相似文献
17.
18.
20.
A new analytical scale DNA affinity binding assay for analyses of specific protein-DNA interactions.
We describe a rapid analytical assay for identification of proteins binding to specific DNA sequences. The DAPSTER assay (DNA affinity preincubation specificity test of recognition assay) is a DNA affinity chromatography-based microassay that can discriminate between specific and nonspecific protein-DNA interactions. The assay is sensitive and can detect protein-DNA interactions and larger multicomponent complexes that can be missed by other analytical methods. Here we describe in detail the optimization and utilization of the DAPSTER assay to isolate AP-1 complexes and associated proteins in multimeric complexes bound to the AP-1 DNA element. 相似文献