首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term consequences of traumatic brain injury (TBI), specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ), subgranular zone (SGZ), striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes.  相似文献   

2.
3.
Microglial cells are monocytic lineage cells that reside in the CNS and have the capacity to become activated during various pathological conditions. Although it was demonstrated that activation of microglial cells could be achieved in vitro by the engagement of CD40-CD40L interactions in combination with proinflammatory cytokines, the exact factors that mediate activation of microglial cells in vivo during CNS autoimmunity are ill-defined. To investigate the role of CD40 in microglial cell activation during experimental autoimmune encephalomyelitis (EAE), we used bone marrow chimera mice that allowed us to distinguish microglial cells from peripheral macrophages and render microglial cells deficient in CD40. We found that the first step of microglial cell activation was CD40-independent and occurred during EAE onset. The first step of activation consisted of microglial cell proliferation and up-regulation of the activation markers MHC class II, CD40, and CD86. At the peak of disease, microglial cells underwent a second step of activation, which was characterized by a further enhancement in activation marker expression along with a reduction in proliferation. The second step of microglial cell activation was CD40-dependent and the failure of CD40-deficient microglial cells to achieve a full level of activation during EAE was correlated with reduced expansion of encephalitogenic T cells and leukocyte infiltration in the CNS, and amelioration of clinical symptoms. Thus, our findings demonstrate that CD40 expression on microglial cells is necessary to complete their activation process during EAE, which is important for disease progression.  相似文献   

4.
The role of microglia during neurodegeneration remains controversial. We investigated whether microglial cells have a neurotoxic or neuroprotective function in the retina. Retinal explants from 10-day-old mice were treated in vitro with minocycline to inhibit microglial activation, with LPS to increase microglial activation, or with liposomes loaded with clodronate (Lip-Clo) to deplete microglial cells. Flow cytometry was used to assess the viability of retinal cells in the explants and the TUNEL method to show the distribution of dead cells. The immunophenotypic and morphological features of microglia and their distribution were analyzed with flow cytometry and immunocytochemistry. Treatment of retinal explants with minocycline reduced microglial activation and simultaneously significantly decreased cell viability and increased the presence of TUNEL-labeled cell profiles. This treatment also prevented the migration of microglial cells towards the outer nuclear layer, where cell death was most abundant. The LPS treatment increased microglial activation but had no effect on cell viability or microglial distribution. Finally, partial microglial removal with Lip-Clo diminished the cell viability in the retinal explants, showing a similar effect to that of minocycline. Hence, cell viability is diminished in retinal explants cultured in vitro when microglial cells are removed or their activation is inhibited, indicating a neurotrophic role for microglia in this system.  相似文献   

5.
6.
Seven biotinylated lectins were utilized as histochemical markers for the study of microglial cells in the brain of Salamandra salamandra. It has been demonstrated that SBA, BSA-I, BSA-I-B4 and RCA120 label the microglial cells and, on the basis of the binding selectivity of the single lectins for specific carbohydrates, it was found that alpha-galactosyl residues are present in high density on the microglial membrane of S. salamandra. The reaction was localized not only to the ramified microglial cells, but also to other round cells without extensions, interpreted as ameboid microglial cells. The results show that lectin binding is a reliable molecular probe for identifying microglial cells in urodels.  相似文献   

7.
Morphological studies on neuroglia   总被引:3,自引:0,他引:3  
The postnatal development of microglial cells was investigated in the neonatal rat brain by use of light- and electron microscopy, including enzyme-histochemical techniques. Microglial cells were selectively stained by demonstration of their nucleoside diphosphatase (NDPase) activity and classified into three types: 1) In the early postnatal period "primitive microglial cells" showing scantily ramified processes were found in the cerebral cortex, the hippocampal formation, and the hypothalamus. During the course of the first postnatal week the processes of this cell type developed gradually and the cells were transformed into typical ramified microglial cells, called "resting microglial cells". 2) "Amoeboid microglial cells "showing typical features of macrophages were characteristic of the cerebral white matter. 3) "Round microglial cells" possessing a round soma and few pseudopodia but no characteristic processes occurred in large numbers in the subventricular zone of the lateral ventricle and as single elements in the vicinity of blood vessels. Histochemically, thiamine pyrophosphatase (TPPase) was demonstrated only in the fully developed, ramified microglial cells ("resting microglial cells"), which could be readily observed in the central nervous tissue from the age of 14 day. "Round and amoeboid microglial cells" did not show TPPase activity and disappeared after 14 days of postnatal life. By use of electron microscopy, in neonatal rats NDPase activity was apparent in the plasma membrane of the three types of microglial cells ("primitive, round, and amoeboid" types). They showed basically similar submicroscopic characteristics, i.e., well-developed Golgi apparatus, long strands of rough-surfaced endoplasmic reticulum, single dense bodies and vacuoles, and numerous ribosomes. "Amoeboid microglial cells" were characterized by their well-developed cytoplasmic vacuoles and phagocytic inclusion bodies. The present study strongly suggests a mesodermal origin for these microglial elements.  相似文献   

8.
The effect of potassium channel blocker tetraethylammonium and 4-aminopyridine was examined on the elevated K+ concentration-induced microglial activation on rat hippocampal slice preparations. Microglial cells were detected by immunohistochemisty with a monoclonal antibody (OX 42) raised against a type 3 complement receptor. During activation the morphology of the microglial cells changes and the staining intensity increases. The degree of microglial activation was determined by measuring the integrated optical density of the cells. Tetraethylammonium and 4-aminopyridine failed to reduce the elevated K+ concentration-induced microglial activation. Both potassium channel blockers, when applied on the hippocampal slices without K+, caused significantly increased microglial activation as compared to the control slices. In order to check whether the functional alteration of the neuronal population induced by 4-aminopyridine caused the activation of the microglial cells, Schaffer collaterals were cut to block spreading of epileptiform hyperactivity of the CA3 pyramidal cells to the CA1 region. No significant differences were found in microglial activation between the CA3 and CA1 regions, indicating that the effect of 4-aminopyridine on microglial cells is independent of the epileptiform activity caused by the drug.  相似文献   

9.
Opioids are among the most powerful analgesics for managing pain, yet their repeated use can lead to the development of severe adverse effects. In a recent study, we identified the microglial pannexin-1 channel (Panx1) as a critical substrate for opioid withdrawal. Here, we investigated whether microglial Panx1 contributes to opioid-induced hyperalgesia (OIH) and opioid analgesic tolerance using mice with a tamoxifen-inducible deletion of microglial Panx1. We determined that escalating doses of morphine resulted in thermal pain hypersensitivity in both Panx1-expressing and microglial Panx1-deficient mice. In microglial Panx1-deficient mice, we also found that acute morphine antinociception remained intact, and repeated morphine treatment at a constant dose resulted in a progressive decline in morphine antinociception and a reduction in morphine potency. This reduction in morphine antinociceptive potency was indistinguishable from that observed in Panx1-expressing mice. Notably, morphine tolerant animals displayed increased spinal microglial reactivity, but no change of microglial Panx1 expression. Collectively, our findings indicate microglial Panx1 differentially contributes to opioid withdrawal, but not the development of opioid-induced hyperalgesia or tolerance.  相似文献   

10.
Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.  相似文献   

11.
Highly aggressively proliferating immortalized (HAPI) microglial cells have been used as an in vitro model for investigating key microglial functions including inflammatory, neurotoxic, and phagocytic activities. Through the use of offline strong cation-exchange fractionation followed by inline reversed-phase chromatographic separation and tandem mass spectrometric analysis on a hybrid linear ion trap-Orbitrap instrument, the HAPI microglial proteome was characterized to a depth of 3006 unique protein groups. Upon bioinformatic analysis of the HAPI proteome data set, enrichment was observed for processes relevant to microglial function including those associated with immune system response. This study marks the most comprehensive reference data set generated to date for the rat microglial proteome.  相似文献   

12.
In this study, microglial migration and phagocytosis were examined in mouse organotypic hippocampal slice cultures, which were treated with N-methyl-D-aspartate (NMDA) to selectively injure neuronal cells. Microglial cells were visualized by the expression of enhanced green fluorescent protein. Daily observation revealed microglial accumulation in the pyramidal cell layer, which peaked 5 to 6 days after NMDA treatment. Time-lapse imaging showed that microglia migrated to the pyramidal cell layer from adjacent and/or remote areas. There was no difference in the number of proliferating microglia between control and NMDA-treated slices in both the pyramidal cell layer and stratum radiatum, suggesting that microglial accumulation in the injured areas is mainly due to microglial migration, not to proliferation. Time-lapse imaging also showed that the injured neurons, which were visualized by propidium iodide (PI), disappeared just after being surrounded by microglia. Daily observation revealed that the intensity of PI fluorescence gradually attenuated, and this attenuation was suppressed by pretreatment with clodronate, a microglia toxin. These findings suggest that accumulating microglia phagocytosed injured neurons, and that PI fluorescence could be a useful indicator for microglial phagocytosis. Using this advantage to examine microglial phagocytosis in living slice cultures, we investigated the involvements of mitogen-activated protein (MAP) kinases in microglial accumulation and phagocytosis. p38 MAP kinase inhibitor SB203580, but not MAP kinase/extracellular signal-regulated kinase inhibitor PD98059 or c-Jun N-terminal kinase inhibitor SP600125, suppressed the attenuation of PI fluorescence. On the other hand, microglial accumulation in the injured areas was not inhibited by any of these inhibitors. These data suggest that p38 MAP kinase plays an important role in microglial phagocytosis of injured neurons.  相似文献   

13.
Microglia are activated in humans following infection with human immunodeficiency virus (HIV), and brain inflammation is thought to be involved in neuronal injury and dysfunction during HIV infection. Numerous studies indicate a role for the HIV regulatory protein Tat in HIV-related inflammatory and neurodegenerative processes, although the specific effects of Tat on microglial activation, and the signal transduction mechanisms thereof, have not been elucidated. In the present study, we document the effects of Tat on microglial activation and characterize the signal transduction pathways responsible for Tat's pro-inflammatory effects. Application of Tat to N9 microglial cells increased multiple parameters of microglial activation, including superoxide production, phagocytosis, nitric oxide release and TNF alpha release. Tat also caused activation of both p42/p44 mitogen activated protein kinase (MAPK) and NF kappa B pathways. Inhibitor studies revealed that Tat-induced NF kappa B activation was responsible for increased nitrite release, while MAPK activation mediated superoxide release, TNF alpha release, and phagocytosis. Lastly, pre-treatment of microglial cells with physiological concentrations of 17 beta-estradiol suppressed Tat-mediated microglial activation by interfering with Tat-induced MAPK activation. Together, these data elucidate specific components of the microglial response to Tat and suggest that Tat could contribute to the neuropathology associated with HIV infection through microglial promulgation of oxidative stress.  相似文献   

14.
Spreading depression (SD) is thought to cause migraine aura, and perhaps migraine, and includes a transient loss of synaptic activity preceded and followed by increased neuronal excitability. Activated microglia influence neuronal activity and play an important role in homeostatic synaptic scaling via release of cytokines. Furthermore, enhanced neuronal function activates microglia to not only secrete cytokines but also to increase the motility of their branches, with somata remaining stationary. While SD also increases the release of cytokines from microglia, the effects on microglial movement from its synaptic activity fluctuations are unknown. Accordingly, we used time-lapse imaging of rat hippocampal slice cultures to probe for microglial movement associated with SD. We observed that in uninjured brain whole microglial cells moved. The movements were well described by the type of Lévy flight known to be associated with an optimal search pattern. Hours after SD, when synaptic activity rose, microglial cell movement was significantly increased. To test how synaptic activity influenced microglial movement, we enhanced neuronal activity with chemical long-term potentiation or LPS and abolished it with TTX. We found that microglial movement was significantly decreased by enhanced neuronal activity and significantly increased by activity blockade. Finally, application of glutamate and ATP to mimic restoration of synaptic activity in the presence of TTX stopped microglial movement that was otherwise seen with TTX. Thus, synaptic activity retains microglial cells in place and an absence of synaptic activity sends them off to influence wider expanses of brain. Perhaps increased microglial movements after SD are a long-lasting, and thus maladaptive, response in which these cells increase neuronal activity via contact or paracrine signaling, which results in increased susceptibility of larger brain areas to SD. If true, then targeting mechanisms that retard activity-dependent microglial Lévy flights may be a novel means to reduce susceptibility to migraine.  相似文献   

15.
The present study showed that the HIS-C7 monoclonal antibody, which recognizes the chick form of CD45, is a specific marker for macrophages/microglial cells in the developing and mature chick central nervous system (CNS). HIS-C7-positive cells were characterized according to their morphological features and chronotopographical distribution patterns within developing and adult CNS, similar to those of macrophages/microglial cells in the quail CNS and confirmed by their histochemical labeling with Ricinus communis agglutinin I, a lectin that recognizes chick microglial cells. Therefore, the HIS-C7 antibody is a valuable tool to identify brain macrophage and microglial cells in studies of the function, development, and pathology of the chick brain. CD45 expression differed between chick microglia (as revealed with HIS-C7 antibody) and mouse microglial cells (as revealed with an antibody against mouse form of CD45). Thus, a discontinuous label was seen on mouse microglial cells with the anti-mouse CD45 immunostaining, whereas the entire surface of chick microglial cells was labeled with the anti-chick CD45 staining. The functional relevance of these differences between species has yet to be determined.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.  相似文献   

17.
Experimental autoimmune encephalomyelitis repressed by microglial paralysis   总被引:18,自引:0,他引:18  
Although microglial activation occurs in inflammatory, degenerative and neoplastic central nervous system (CNS) disorders, its role in pathogenesis is unclear. We studied this question by generating CD11b-HSVTK transgenic mice, which express herpes simplex thymidine kinase in macrophages and microglia. Ganciclovir treatment of organotypic brain slice cultures derived from CD11b-HSVTK mice abolished microglial release of nitrite, proinflammatory cytokines and chemokines. Systemic ganciclovir administration to CD11b-HSVTK mice elicited hematopoietic toxicity, which was prevented by transfer of wild-type bone marrow. In bone marrow chimeras, ganciclovir blocked microglial activation in the facial nucleus upon axotomy and repressed the development of experimental autoimmune encephalomyelitis. We conclude that microglial paralysis inhibits the development and maintenance of inflammatory CNS lesions. The microglial compartment thus provides a potential therapeutic target in inflammatory CNS disorders. These results validate CD11b-HSVTK mice as a tool to study the impact of microglial activation on CNS diseases in vivo.  相似文献   

18.
Chromogranin A is up-regulated in the senile plaques of Alzheimer's brain and is a novel activator of microglia, transforming them to a neurotoxic phenotype. Treatment of primary cultures of rat brain microglia or the murine N9 microglial cell line with chromogranin A resulted in nitric oxide production, which triggered microglial apoptosis. Exposure of microglia to chromogranin A resulted in a fall in mitochondrial membrane potential. Mitochondrial depolarisation and apoptosis were reduced significantly by cyclosporin A, but not by the calcineurin inhibitor FK506. Cytochrome c did not translocate from the mitochondria to the cytosol, but its expression became significantly enhanced within the mitochondria. Inhibition of caspase 1 attenuated chromogranin A-induced microglial apoptosis, but did not prevent mitochondrial depolarisation, indicating that apoptosis occurred downstream of mitochondrial depolarisation. Conversely, staurosporine-induced microglial apoptosis led to mitochondrial cytochrome c release, but not caspase 1 activation. Our findings provide insight into the pathways controlling activation-triggered microglial apoptosis and may point to routes for the modulation of microglial evoked neurotoxicity.  相似文献   

19.
Graeber MB  Li W  Rodriguez ML 《FEBS letters》2011,585(23):3798-3805
There is increasing confusion about the meaning of the terms inflammation, neuroinflammation, and microglial inflammation. We aim in this review to achieve greater clarity regarding these terms, which are essential for our understanding of the role of microglia in CNS inflammatory conditions. The important concept of sterile inflammation is explained against the backdrop of classical inflammation, and its key differences from what researchers refer to when they use the terms neuroinflammation and microglial inflammation are illustrated. We propose to replace the term "neuroinflammation" with "microglial activation" or "CNS pseudo-inflammation", if microglial activation does not suffice. In addition, we recommend abandoning the terms "microglial inflammation" and "inflamed microglia" because of the lack of a clear concept behind them.  相似文献   

20.
One of the microglial cell functions is the removal of modified extracellular proteins in the brain. The connection between protein oxidation, proteolysis, and microglial activation is the topic of this review. The effect of various activation agents on microglial cells with regard to changes in substrate uptake, proteolytic capacity and degradation efficiency of different types of oxidized protein materials is reviewed. It is shown that different activation stimuli initiate substrate-specific modulation for uptake and proteolysis, influencing an array of factors including receptor expression, lysosomal pH, and proteasome subunit composition. Age-related alterations in activation and proteolytic capacity in microglial cells are also discussed. In ageing, proteolytic effectiveness is diminished, while microglial cells are chronically activated and lose the oxidative burst ability, possibly supporting a 'vicious circle' of macrophage-induced neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号