首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is recognized now that intrinsically disordered proteins (IDPs), which do not have unique 3D structures as a whole or in noticeable parts, constitute a significant fraction of any given proteome. IDPs are characterized by an astonishing structural and functional diversity that defines their ability to be universal regulators of various cellular pathways. Programmed cell death (PCD) is one of the most intricate cellular processes where the cell uses specialized cellular machinery and intracellular programs to kill itself. This cell-suicide mechanism enables metazoans to control cell numbers and to eliminate cells that threaten the animal''s survival. PCD includes several specific modules, such as apoptosis, autophagy, and programmed necrosis (necroptosis). These modules are not only tightly regulated but also intimately interconnected and are jointly controlled via a complex set of protein–protein interactions. To understand the role of the intrinsic disorder in controlling and regulating the PCD, several large sets of PCD-related proteins across 28 species were analyzed using a wide array of modern bioinformatics tools. This study indicates that the intrinsic disorder phenomenon has to be taken into consideration to generate a complete picture of the interconnected processes, pathways, and modules that determine the essence of the PCD. We demonstrate that proteins involved in regulation and execution of PCD possess substantial amount of intrinsic disorder. We annotate functional roles of disorder across and within apoptosis, autophagy, and necroptosis processes. Disordered regions are shown to be implemented in a number of crucial functions, such as protein–protein interactions, interactions with other partners including nucleic acids and other ligands, are enriched in post-translational modification sites, and are characterized by specific evolutionary patterns. We mapped the disorder into an integrated network of PCD pathways and into the interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathway.  相似文献   

2.
3.
4.
Although RNA-binding proteins (RBPs) are known to be enriched in intrinsic disorder, no previous analysis focused on RBPs interacting with specific RNA types. We fill this gap with a comprehensive analysis of the putative disorder in RBPs binding to six common RNA types: messenger RNA (mRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), non-coding RNA (ncRNA), ribosomal RNA (rRNA), and internal ribosome RNA (irRNA). We also analyze the amount of putative intrinsic disorder in the RNA-binding domains (RBDs) and non-RNA-binding-domain regions (non-RBD regions). Consistent with previous studies, we show that in comparison with human proteome, RBPs are significantly enriched in disorder. However, closer examination finds significant enrichment in predicted disorder for the mRNA-, rRNA- and snRNA-binding proteins, while the proteins that interact with ncRNA and irRNA are not enriched in disorder, and the tRNA-binding proteins are significantly depleted in disorder. We show a consistent pattern of significant disorder enrichment in the non-RBD regions coupled with low levels of disorder in RBDs, which suggests that disorder is relatively rarely utilized in the RNA-binding regions. Our analysis of the non-RBD regions suggests that disorder harbors posttranslational modification sites and is involved in the putative interactions with DNA. Importantly, we utilize experimental data from DisProt and independent data from Pfam to validate the above observations that rely on the disorder predictions. This study provides new insights into the distribution of disorder across proteins that bind different RNA types and the functional role of disorder in the regions where it is enriched.  相似文献   

5.
Neurotrophic signaling pathways have been implicated in the maintenance of the mesolimbic dopamine system, as well as in changes in this system induced by chronic morphine exposure. We found that many of these signaling pathway proteins are expressed at appreciable levels within the ventral tegmental area (VTA) and related regions, although with substantial regional variation. Moreover, phospholipase Cgamma1 (PLCgamma1) was significantly and specifically up-regulated within the VTA by 30% following chronic exposure to morphine. PLCgamma1 mRNA expression is enriched in dopaminergic neurons within the VTA; however, the up-regulation of PLCgamma1 in this region was not seen at the mRNA level. In contrast to PLCgamma1, insulin receptor substrate (IRS)-2, a protein involved in phosphatidylinositol 3-kinase signaling, and another putative IRS-like protein were significantly down-regulated within the VTA by 49 and 45%, respectively. Levels of several proteins within the Ras-ERK pathway were not altered. Regulation of neurotrophic factor signaling proteins may play a role in morphine-induced plasticity within the mesolimbic dopamine system.  相似文献   

6.
The extracellular matrix is very well organized at the supramolecular and tissue levels and little is known on the potential role of intrinsic disorder in promoting its organization. We predicted the amount of disorder and identified disordered regions in the human extracellular proteome with established computational tools. The extracellular proteome is significantly enriched in proteins comprising more than 50% of disorder compared to the complete human proteome. The enrichment is mostly due to long disordered regions containing at least 100 consecutive disordered residues. The amount of intrinsic disorder is heterogeneous in the extracellular protein families, with the most disordered being collagens and the small integrin-binding ligand N-linked glycoproteins. Although most domains found in extracellular proteins are structured, the fibronectin III domains contain a variable amount of disordered residues (up to 92%). Binding sites for heparin and integrins are found in disordered sequences of extracellular proteins. Intrinsic disorder is evenly distributed in hubs and ends in the interaction network of extracellular proteins with their extracellular partners. In contrast, extracellular hubs are significantly enriched in disorder in the network of extracellular proteins with their extracellular, membrane and intracellular partners. Disorder could thus provide the structural plasticity required for the hubs to interact with membrane and intracellular proteins. Organization and assembly of the extracellular matrix, development of mineralized tissues and cell-matrix adhesion are the biological processes overrepresented in the most disordered extracellular proteins. Extracellular disorder is associated with binding to growth factors, glycosaminoglycans and integrins at the molecular level.  相似文献   

7.
Intrinsic protein disorder is a widespread phenomenon characterised by a lack of stable three-dimensional structures and is considered to play an important role in protein-protein interactions (PPIs). This study examined the genome-wide preference of disorder in PPIs by using exhaustive disorder prediction in human PPIs. We categorised the PPIs into three types (interaction between disordered proteins, interaction between structured proteins, and interaction between a disordered protein and a structured protein) with regard to the flexibility of molecular recognition and compared these three interaction types in an existing human PPI network with those in a randomised network. Although the structured regions were expected to become the identifiers for binding recognition, this comparative analysis revealed unexpected results. The occurrence of interactions between disordered proteins was significantly frequent, and that between a disordered protein and a structured protein was significantly infrequent. We found that this propensity was much stronger in interactions between nonhub proteins. We also analysed the interaction types from a functional standpoint by using GO, which revealed that the interaction between disordered proteins frequently occurred in cellular processes, regulation, and metabolic processes. The number of interactions, especially in metabolic processes between disordered proteins, was 1.8 times as large as that in the randomised network. Another analysis conducted by using KEGG pathways provided results where several signaling pathways and disease-related pathways included many interactions between disordered proteins. All of these analyses suggest that human PPIs preferably occur between disordered proteins and that the flexibility of the interacting protein pairs may play an important role in human PPI networks.  相似文献   

8.
Intrinsically disordered regions have been associated with various cellular processes and are implicated in several human diseases, but their exact roles remain unclear. We previously defined two classes of conserved disordered regions in budding yeast, referred to as “flexible” and “constrained” conserved disorder. In flexible disorder, the property of disorder has been positionally conserved during evolution, whereas in constrained disorder, both the amino acid sequence and the property of disorder have been conserved. Here, we show that flexible and constrained disorder are widespread in the human proteome, and are particularly common in proteins with regulatory functions. Both classes of disordered sequences are highly enriched in regions of proteins that undergo tissue-specific (TS) alternative splicing (AS), but not in regions of proteins that undergo general (i.e., not tissue-regulated) AS. Flexible disorder is more highly enriched in TS alternative exons, whereas constrained disorder is more highly enriched in exons that flank TS alternative exons. These latter regions are also significantly more enriched in potential phosphosites and other short linear motifs associated with cell signaling. We further show that cancer driver mutations are significantly enriched in regions of proteins associated with TS and general AS. Collectively, our results point to distinct roles for TS alternative exons and flanking exons in the dynamic regulation of protein interaction networks in response to signaling activity, and they further suggest that alternatively spliced regions of proteins are often functionally altered by mutations responsible for cancer.  相似文献   

9.
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the “stressed” cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs’ signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.  相似文献   

10.
We analyzed the mouse forebrain cytosolic phosphoproteome using sequential (protein and peptide) IMAC purifications, enzymatic dephosphorylation, and targeted tandem mass spectrometry analysis strategies. In total, using complementary phosphoenrichment and LC-MS/MS strategies, 512 phosphorylation sites on 540 non-redundant phosphopeptides from 162 cytosolic phosphoproteins were characterized. Analysis of protein domains and amino acid sequence composition of this data set of cytosolic phosphoproteins revealed that it is significantly enriched in intrinsic sequence disorder, and this enrichment is associated with both cellular location and phosphorylation status. The majority of phosphorylation sites found by MS were located outside of structural protein domains (97%) but were mostly located in regions of intrinsic sequence disorder (86%). 368 phosphorylation sites were located in long regions of disorder (over 40 amino acids long), and 94% of proteins contained at least one such long region of disorder. In addition, we found that 58 phosphorylation sites in this data set occur in 14-3-3 binding consensus motifs, linear motifs that are associated with unstructured regions in proteins. These results demonstrate that in this data set protein phosphorylation is significantly depleted in protein domains and significantly enriched in disordered protein sequences and that enrichment of intrinsic sequence disorder may be a common feature of phosphoproteomes. This supports the hypothesis that disordered regions in proteins allow kinases, phosphatases, and phosphorylation-dependent binding proteins to gain access to target sequences to regulate local protein conformation and activity.  相似文献   

11.
Schwann cells (SC) are essential for the growth, maintenance, and regeneration of peripheral nerves, but the proteome of normal human SC is poorly defined. Here, a proteomic analysis by LC–MS/MS is performed to define the protein expression profile of primary human SC. A total of 19 557 unique peptides corresponding to 1553 individual proteins are identified. Ingenuity Pathway Analysis (IPA), Gene Ontology (GO), and Database for Annotation, Visualization, and Integrated Discovery (DAVID) are used to assign protein localization and function, and to define enriched pathways. EIF2, mTOR, and integrin signaling are among the most enriched pathways and the most enriched biological function is cell–cell adhesion, which is in agreement with the supportive role of SC in peripheral nerves. In addition, several nociceptors and synaptic proteins are identified and may contribute to the recently discovered role of SC in pain sensation and cancer progression. This proteome analysis of normal human SC constitutes a reference for future molecular explorations of physiological and pathological processes where SC are involved.  相似文献   

12.
Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.  相似文献   

13.
Protein disorder has been frequently associated with protein-protein interaction. However, our knowledge of how protein disorder evolves within a network is limited. It is expected that physically interacting proteins evolve in a coordinated manner. This has so far been shown in their evolutionary rate, and in their gene expression levels. Here we examine the percentage of predicted disorder residues within binary and complex interacting proteins (physical and functional interactions respectively) to investigate how the disorder of a protein relates to that of its interacting partners. We show that the level of disorder of interacting proteins are correlated, with a greater correlation seen among proteins that are co-members of the same complex, and a lesser correlation between proteins that are documented as binary interactors of each other. There is a striking variation among complexes not only in their disorder, but in the extent to which the proteins within the complex differ in their levels of disorder, with RNA processes and protein binding complexes showing more variation in the disorder of their proteins, whilst other complexes show very little variation in the overall disorder of their constituent proteins. There is likely to be a stronger selection for complex subunits to have similar disorder, than is seen for proteins involved in binary interactions. Thus, binary interactions may be more resilient to changes in disorder than are complex interactions. These results add a new dimension to the role of disorder in protein networks, and highlight the potential importance of maintaining similar disorder in the members of a complex.  相似文献   

14.
Cheng Y  LeGall T  Oldfield CJ  Dunker AK  Uversky VN 《Biochemistry》2006,45(35):10448-10460
Evidence that many protein regions and even entire proteins lacking stable tertiary and/or secondary structure in solution (i.e., intrinsically disordered proteins) might be involved in protein-protein interactions, regulation, recognition, and signal transduction is rapidly accumulating. These signaling proteins play a crucial role in the development of several pathological conditions, including cancer. To test a hypothesis that intrinsic disorder is also abundant in cardiovascular disease (CVD), a data set of 487 CVD-related proteins was extracted from SWISS-PROT. CVD-related proteins are depleted in major order-promoting residues (Trp, Phe, Tyr, Ile, and Val) and enriched in some disorder-promoting residues (Arg, Gln, Ser, Pro, and Glu). The application of a neural network predictor of natural disordered regions (PONDR VL-XT) together with cumulative distribution function (CDF) analysis, charge-hydropathy plot (CH plot) analysis, and alpha-helical molecular recognition feature (alpha-MoRF) indicator revealed that CVD-related proteins are enriched in intrinsic disorder. In fact, the percentage of proteins with 30 or more consecutive residues predicted by PONDR VL-XT to be disordered was 57 +/- 4% for CVD-associated proteins. This value is close that described earlier for signaling proteins (66 +/- 6%) and is significantly larger than the content of intrinsic disorder in eukaryotic proteins from SWISS-PROT (47 +/- 4%) and in nonhomologous protein segments with a well-defined three-dimensional structure (13 +/- 4%). Furthermore, CDF and CH-plot analyses revealed that 120 and 36 CVD-related proteins, respectively, are wholly disordered. This high level of intrinsic disorder could be important for the function of CVD-related proteins and for the control and regulation of processes associated with cardiovascular disease. In agreement with this hypothesis, 198 alpha-MoRFs were predicted in 101 proteins from the CVD data set. A comparison of disorder predictions with the experimental structural and functional data for a subset of the CVD-associated proteins indicated good agreement between predictions and observations. Thus, our data suggest that intrinsically disordered proteins might play key roles in cardiovascular disease.  相似文献   

15.
Intracellular juxtamembrane regions of transmembrane proteins play pivotal roles in cell signalling, mediated by protein-protein interactions. Disordered protein regions, and short conserved motifs within them, are emerging as key determinants of many such interactions. Here, we investigated whether disorder and conserved motifs are enriched in the juxtamembrane area of human single-pass transmembrane proteins. Conserved motifs were defined as short disordered regions that were much more conserved than the adjacent disordered residues. Human single-pass proteins had higher mean disorder in their cytoplasmic segments than their extracellular parts. Some, but not all, of this effect reflected the shorter length of the cytoplasmic tail. A peak of cytoplasmic disorder was seen at around 30 residues from the membrane. We noted a significant increase in the incidence of conserved motifs within the disordered regions at the same location, even after correcting for the extent of disorder. We conclude that elevated disorder within the cytoplasmic tail of many transmembrane proteins is likely to be associated with enrichment for signalling interactions mediated by conserved short motifs.  相似文献   

16.
A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.  相似文献   

17.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient’s brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag–based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein–protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.  相似文献   

18.
Chen Wang  Lukasz Kurgan 《Proteomics》2016,16(10):1486-1498
Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty‐by‐association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (~548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA‐binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA‐binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation.  相似文献   

19.
20.
The proteins of the postsynaptic density (PSD) fraction of cerebral cortex were resolved by two-dimensional electrophoresis (2DE) and more than 30 proteins identified by characteristic 2DE mobility, immunoblotting with specific antibodies, and N-terminal and peptide sequencing. The PSD fraction is enriched for spectrin, actin, tublin and microtubule associated protein II, myosin, enzymes of glycolysis, creatine kinase, elongation factor 1 alpha, and receptor protein. The three neurofilament proteins are detected but a 58-kDa protein is prominent and is, by peptide sequencing, the bovine homolog of the recently cloned 66-kDa neurofilament protein; in contrast to the latter, however, it is enriched in cerebrum compared with spinal cord. A 68-kDa protein is identified as a member of the hsp70/BiP family of proteins. A protein, designated dynamin, indicating its putative role as a microtubule motor, is identified as a major protein, is found, however, greatly enriched in the particulate fraction, and is significantly denaturant and detergent insoluble. A protein designated N-ethylmaleimide-sensitive factor is also detected. Thus, two proteins implicated in vesicular transport are present in the PSD fraction. Seven polyclonal antibodies were produced to 2DE separated and electroeluted proteins of the PSD and were identified by peptide sequence analysis and 2DE profile as the hsp70/BiP homologous protein, the novel neurofilament protein synapsin IIa, pyruvate kinase, dynamin, aconitase and an unknown contaminating protein, and a 115-kDa protein that by subcellular fractionation and immunoblotting is a diagnostic PSD molecule. In addition, peptide sequences are obtained for four additional higher molecular weight proteins of the PSD that are not related at the level of primary structure to any known proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号