首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we report on the further development of the scale-down, two-compartment (STR + PFR) experimental simulation model. For the first time, the effect on high cell density Escherichia coli fed-batch fermentations of a changing microenvironment with respect to all three of the major spatial heterogeneities that may be associated with large-scale processing (pH, glucose, and dissolved oxygen concentration) were studied simultaneously. To achieve this, we used traditional microbiological analyses as well as multiparameter flow cytometry to monitor cell physiological response at the individual cell level. It was demonstrated that for E. coli W3110 under such conditions in a 20 m(3) industrial fed-batch fermentation, the biomass yield is lower and final cell viability is higher than those found in the equivalent well-mixed, 5L laboratory scale case. However, by using a combination of the well-mixed 5L stirred tank reactor (STR) with a suitable plug flow reactor (PFR) to mimic the changing microenvironment at the large scale, very similar results to those in the 20 m(3) reactor may be obtained. The similarity is greatest when the PFR is operated with a mean residence time of 50 sec with a low level of dO(2) and a high glucose concentration with either a pH of 7 throughout the two reactors or with pH controlled at 7 in the STR by addition into the PFR where the pH is > 7.  相似文献   

2.
This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point.  相似文献   

3.
In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10–15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na+, osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.  相似文献   

4.
Parallel miniaturized stirred tank bioreactors are an efficient tool for "high-throughput bioprocess design." As most industrial bioprocesses are pH-controlled and/or are operated in a fed-batch mode, an exact scale-down of these reactions with continuous dosing of fluids into the miniaturized bioreactors is highly desirable. Here, we present the development, characterization, and application of a novel concept for a highly integrated microfluidic device for a bioreaction block with 48 parallel milliliter-scale stirred tank reactors (V = 12 mL). The device consists of an autoclavable fluidic section to dispense up to three liquids individually per reactor. The fluidic section contains 144 membrane pumps, which are magnetically driven by a clamped-on actuator section. The micropumps are designed to dose 1.6 μL per pump lift. Each micropump enables a continuous addition of liquid with a flow rate of up to 3 mL h(-1) . Viscous liquids up to a viscosity of 8.2 mPa s (corresponds to a 60% v/v glycerine solution) can be pumped without changes in the flow rates. Thus, nearly all feeding solutions can be delivered, which are commonly used in bioprocesses. The functionality of the first prototype of this microfluidic device was demonstrated by double-sided pH-controlled cultivations of Saccharomyces cerevisiae based on signals of fluorimetric sensors embedded at the bottom of the bioreactors. Furthermore, fed-batch cultivations with constant and exponential feeding profiles were successfully performed. Thus, the presented novel microfluidic device will be a useful tool for parallel and, thus, efficient optimization of controlled fed-batch bioprocesses in small-scale stirred tank bioreactors. This can help to reduce bioprocess development times drastically.  相似文献   

5.
Substrate concentration gradients are likely to appear during large scale fermentations. To study effects of such gradients on microorganisms, an aerated scale-down reactor system was constructed. It consists of a plug flow reactor (PFR) and a stirred tank reactor (STR), between which the medium is circulated. The PFR, which is an aerated static mixer reactor, was characterized with respect to plug flow behaviour and oxygen transfer. A Bodenstein number of 15–220, depending on residence time and aeration rate, and a kLa of 500–1130 h–1, depending mainly on aeration rate, were obtained. The biological test system used, was aerobic ethanol production by Saccharomyces cerevisiae, due to sugar excess. The ethanol concentration profile and the yield of biomass were compared in two fed-batch fermentations. In the first case, the feeding point of molasses was located at the inlet of the PFR. This simulates location of the feeding point in the segregated part of a heterogeneous reactor, with local high sugar concentrations. In the second mode of operation, as a control with good mixing conditions, the PFR was disconnected from the STR, into which the substrate was fed. Differences were found: Up to 6% less biomass was produced and a larger amount of ethanol was formed in the two-compartment reactor system, due to the uneven sugar concentration distribution. This emphasizes the importance of the location of, and the mixing conditions at, the feeding point in a bioreactor.  相似文献   

6.
The applicability of a protein-free medium for the production of recombinant human interleukin-2 with baby hamster kidney cells in airlift bioreactors was investigated. For this purpose, a BHK-21 cell line, adapted to grow and produce in protein-free SMIF7 medium without forming spheroids in membrane-aerated bubble-free bioreactors, was used as the producer cell line. First, cultivation of the cells was established at a 20-L scale using an internal loop airlift bioreactor system. During the culturing process the medium formulation was optimized according to the specific requirements associated with cultivation of mammalian cells under protein-free conditions in a bubble-aerated system. The effects of the addition of an antifoam agent on growth, viability, productivity, metabolic rates, and release of lactate dehydrogenase were investigated. Although it was possible to establish cultivation and production at a 20-L scale without the use of antifoaming substances, the addition of 0.002% silicon-oil-based antifoaming reagent improved the cultivation system by completely preventing foam formation. This reduced the release of lactate dehydrogenase activity to the level found in bubble-free aerated stirred tank membrane bioreactors and led to a reduction in generation doubling times by about 5 h (17%). Using the optimized medium formulation, cells were cultivated at a 1000-L scale, resulting in a culture performance comparable to the 20-L airlift bioreactor. For comparison, cultivations with protein-containing SMIF7 medium were carried out at 20- and 1000-L scales. The application of protein supplements did not lead to a significant improvement in the cultivation conditions. The results were also compared with experiments performed in a bubble-free aerated stirred tank membrane bioreactor to evaluate the influence of bubbles on the investigated culture parameters. The data implied a higher metabolic activity of the cells in airlift bioreactors with a 150% higher glucose consumption rate. The results of this study clearly demonstrate the applicability of a protein-free chemically defined medium for the production of recombinant proteins with BHK cells in airlift bioreactors.  相似文献   

7.
采用玉米秸秆水解糖和玉米浆发酵生产丁二酸   总被引:1,自引:0,他引:1  
研究了以玉米秸秆水解糖为碳源,不同氮源条件下琥珀酸放线杆菌Actinobacillus succinogenesSF-9的丁二酸发酵产酸能力。结果表明玉米浆可以替代酵母膏作为丁二酸发酵的廉价氮源。厌氧摇瓶丁二酸发酵单因素试验,得到在初糖浓度50 g/L时,玉米浆的较佳用量为20 g/L。在5 L搅拌罐上,考察了不同初始玉米秸秆水解糖浓度对A.succinogenes SF-9发酵生产丁二酸的影响,结果显示高初始秸秆糖浓度对琥珀酸放线杆菌的生长有抑制作用。采用补料分批发酵,发酵60 h丁二酸的产量达到42.7g/L,丁二酸产率82.7%,生产强度0.81 g/(L·h)。丁二酸的产量和生产强度较分批发酵有明显提高。  相似文献   

8.
Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor.  相似文献   

9.
A stochastic microbial growth model has been elaborated in the case of the culture of E. coli in fed-batch and scale-down reactors. This model is based on the stochastic determination of the generation time of the microbial cells. The determination of generation time is determined by choosing the appropriate value on a log-normal distribution. The appropriateness of such distribution is discussed and growth curves are obtained that show good agreement compared with the experimental results. The mean and the standard deviation of the log-normal distribution can be considered to be constant during the batch phase of the culture, but they vary when the fed-batch mode is started. It has been shown that the parameters related to the log-normal distribution are submitted to an exponential evolution. The aim of this study is to explore the bioreactor hydrodynamic effect on microbial growth. Thus, in a second time, the stochastic growth model has been reinforced by data coming from a previous stochastic bioreactor mixing model (1). The connection of these hydrodynamic data with the actual stochastic growth model has allowed us to explain the scale-down effect associated with the glucose concentration fluctuations. It is important to point out that the scale-down effect is induced differently according to the feeding strategy involved in the fed-batch experiments.  相似文献   

10.
A novel milliliter‐scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter‐scale. A newly designed one‐sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface‐to‐volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa) > 0.15 s?1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter‐scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory‐scale stirred tank bioreactor with six‐bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter‐scale stirred tank bioreactor was reduced compared to the laboratory‐scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale‐up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter‐scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear‐thinning non‐Newtonian behavior. The newly developed one‐sided paddle impellers operated in unbaffled reactors on a 10 milliliter‐scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100 h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443–451. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Equations are developed which describe variable-volume cultivations, including fed-batch systems. An analogy is drawn between the quasi-steady state in variable-volume cultivation and a dynamic steady state in variable-flow, constant-volume chemostat bioreactors. Switching procedures are developed to give a steady-state transition from batch to fed-batch and to continuous operation. In this respect, considerations in the literature have been extended. Computer solutions of the governing differential equations verify the theory and provide insight into the behavior of variable-volume stirred tank reactors. Application of variable-volume cultivation as a tool in investigating growth rates at low substrate levels is suggested. Variable-volume bioreactor systems could be also to obtain controlled dynamic conditions for research or production purposes.  相似文献   

12.
The objective of process characterization is to demonstrate robustness of manufacturing processes by understanding the relationship between key operating parameters and final performance. Technical information from the characterization study is important for subsequent process validation, and this has become a regulatory expectation in recent years. Since performing the study at the manufacturing scale is not practically feasible, development of scale-down models that represent the performance of the commercial process is essential to achieve reliable process characterization. In this study, we describe a systematic approach to develop a bioreactor scale-down model and to characterize a cell culture process for recombinant protein production in CHO cells. First, a scale-down model using 2-L bioreactors was developed on the basis of the 2000-L commercial scale process. Profiles of cell growth, productivity, product quality, culture environments (pH, DO, pCO2), and level of metabolites (glucose, glutamine, lactate, ammonia) were compared between the two scales to qualify the scale-down model. The key operating parameters were then characterized in single-parameter ranging studies and an interaction study using this scale-down model. Appropriate operation ranges and acceptance criteria for certain key parameters were determined to ensure the success of process validation and the process performance consistency. The process worst-case condition was also identified through the interaction study.  相似文献   

13.

Background

Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

Results

The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

Conclusions

Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
  相似文献   

14.
《Process Biochemistry》2007,42(6):1033-1038
Valienamine is an important medicinal intermediate with broad use in the synthesis of some stronger α-glucosidase inhibitors. In order to improve valienamine concentration in the fermentation broth and make the downstream treatment easy, a fed-batch process for the enhanced production of valienamine by Stenotrophomonas maltrophilia in a stirred tank bioreactor was developed. Results showed that supplementation of validamycin A in the process of cultivation could increase the valienamine concentration. One-pulse feeding was observed to be the best strategy. The maximum valienamine concentration of 2.35 g L−1 was obtained at 156 h when 86.4 g of validamycin A was added to a 15-L bioreactor containing 8 L fermentation medium with one-pulse feeding. The maximum valienamine concentration had a great improvement and was increased above 100% compared to batch fermentation in the stirred tank bioreactor. The pH-controlled experiments showed that controlling the pH in the process of one-pulse feeding fermentation had not obvious effect on the production of valienamine.  相似文献   

15.
A series of fed-batch experiments at different agitation speeds were performed using the industrially important strain Trichoderma reesei RUT C-30 in two different bioreactors to understand the close relationship that exists between the shear field within a bioreactor, the morphology of the microorganism, the rheology of cultivation broth, and the process performance. The two bioreactors, stirred tank bioreactor (STB) and reciprocating plate bioreactor (RPB), are characterized by a significantly different shear field to which microorganisms are exposed. Highest biomass concentration (ca. 15 g l−1) was obtained at higher agitation rates in both bioreactors due to better oxygen supply. However, better filter paper activities per mg of protein were obtained at lower agitation in both bioreactors. In both bioreactors, young and healthier fungi in the batch phase were not affected by shear even at higher agitation rates. However, during the fed-batch phase, higher degree of fragmentation of clump morphology at high agitation intensity was confirmed by image analysis. Also, the rheological analysis showed an increase in apparent viscosity during the batch phase and early fed-batch phase due to the increase in the biomass concentration. During the late stages of cultivation, the apparent viscosity decreased due to cell lysis and spore formation.  相似文献   

16.
Continuous processes such as perfusion processes can offer advantages compared to fed-batch or batch processes in bio-processing: improved product quality (e.g. for labile products), increased product yield, and cost savings. In this work, a semi-perfusion process was established in shake flasks and transferred to an automated small-scale bioreactor by daily media exchange via centrifugation based on an existing fed-batch process platform. At first the development of a suitable medium and feed composition, the glucose concentration required by the cells and the cell-specific perfusion rate were investigated in shake flasks as the conventional scale-down system. This lead to an optimized process with a threefold higher titer of 10 g/L monoclonal antibody compared to the standard fed-batch. To proof the suitability and benefit as a small-scale model, the established semi-perfusion process was transferred to an automated small-scale bioreactor with improved pH and dissolved oxygen control. The average specific productivity improved from 24.16 pg/(c*d) in the fed-batch process and 36.04 pg/c*d in the semi-perfusion shake flask to 38.88 pg/(c*d) in the semi-perfusion process performed in the controlled small-scale bioreactor, thus illustrating the benefits resulting from the applied semi-perfusion approach, especially in combination with controlled DO and pH settings. © 2019 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 35: e2757, 2019.  相似文献   

17.
A Large bioreactor is an inhomogenous system with concentration gradients which depend on the fluid dynamics and the mass transfer of the reactor, the feeding strategy, the saturation constant, and the cell density. The responses of Escherichia coli cells to short-term oscillations of the carbon/energy substrate in glucose limited fed-batch cultivations were studied in a two-compartment reactor system consisting of a stirred tank reactor (STR) and an aerated plug flow reactor (PFR) as a recycle loop. Short-term glucose excess or starvation in the PFR was simulated by feeding of glucose to the PFR or to the STR alternatively. The cellular response to repeated short-term glucose excess was a transient increase of glucose consumption and acetate formation. But, there was no accumulation of acetate in the culture, because it was consumed in the STR part where the glucose concentration was growth limiting. However, acetate accumulated during the cultivation if the oxygen supply in the PFR was insufficient, causing higher acetate formation. The biomass yield was then negatively influenced, which was also the case if the PFR was used to simulate a glucose starvation zone. The results suggest that short-term heterogeneities influence the cellular physiology and growth, and can be of major importance for the process performance. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
The specific aspects of airlift reactors emphasizing their function relevance to particular application as bioreactors are presented. The two main groups of airlift reactors – external-loop and concentric-tube reactors – were investigated on a pilot-plant scale with regard to their performance during the cultivation of unicellular and filamentous microorganisms which produce Bacitracin, Cephalosporin C and Nystatin. Some results were compared to those obtained in conventional stirred tank bioreactors. The comparison was carried out based on physical properties (oxygen transfer rate (OTR), volumetric mass transfer coefficient (kLa) and efficiency of oxygen transfer (E)), cell mass, productivity and substrate consumption, secondary metabolite production, and efficiency of the product formation with regard to the specific power input. It was shown that B. licheniformis, C. acremonium and S. noursei fermentations occurred similarly to those performed in stirred vessels, proving that the capacity of the airlift bioreactors surpassed the problems which arise from the morphology and rheology of the broths. From the chemical engineering point of view, it was obvious that the primary tasks of a bioreactor (uniform distribution of microorganisms and nutrients over the entire fermenter volume, appropriate supply of biomass with nutrients and oxygen) were fulfilled by the airlift bioreactors tested. In addition, the efficiency of oxygen transfer (OTR referred to power input) in the airlift fermenters proved to be about 38% higher than in the stirred tank bioreactors (expressed as average values), while the sorption efficiency (OTR referred to antibiotic production) was found to be 22% greater in the airlift system than in an STR. Therefore, the biosyntheses were performed with about a 30–40% increase in energy efficiency and energy savings compared to the conventional system. Moreover, the lack of mechanical devices in the airlift system provides greater safety and a gentler environment for the cultivation of microorganisms.  相似文献   

19.
Biopharmaceutical production processes often use mammalian cells in bioreactors larger than 10,000 L, where gradients of shear stress, substrate, dissolved oxygen and carbon dioxide, and pH are likely to occur. As former tissue cells, producer cell lines such as Chinese hamster ovary (CHO) cells sensitively respond to these mixing heterogeneities, resulting in related scenarios being mimicked in scale-down reactors. However, commonly applied multi-compartment approaches comprising multiple reactors impose a biasing shear stress caused by pumping. The latter can be prevented using the single multi-compartment bioreactor (SMCB) presented here. The exchange area provided by a disc mounted between the upper and lower compartments in a stirred bioreactor was found to be an essential design parameter. Mimicking the mixing power input at a large scale on a small scale allowed the installation of similar mixing times in the SMCB. The particularities of the disc geometry may also be considered, finally leading to a converged decision tree. The work flow identifies a sharply contoured operational field comprising disc designs and power input to install the same mixing times on a large scale in the SMCB without the additional shear stress caused by pumping. The design principle holds true for both nongassed and gassed systems.  相似文献   

20.
The experimental performance of a novel micro-bioreactor envisaged for parallel screening and development of industrial bioprocesses has been tested in this work. The micro-bioreactor with an internal volume of 4.5 mL is operated under oscillatory flow mixing (OFM), where a controllable mixing and mass transfer rates are achieved under batch or continuous laminar flow conditions. Several batch fermentations with a flocculent Saccharomyces cerevisiae strain were carried out at initial glucose concentrations (S(0)) range of approximately 5-20 g/L and compared to yeast growth kinetics in a stirred tank (ST) bioreactor. Aerobic fermentations were monitored ex situ in terms of pH, DO, glucose consumption, and biomass and ethanol production (wherever applicable). An average biomass production increase of 83% was obtained in the micro-bioreactor when compared with the ST, with less 93.6% air requirements. It also corresponded to a 214% increase on biomass production when compared with growth in a shaken flask (SF) at S(0) = 20 g/L. Further anaerobic fermentations at the same initial glucose concentration ranges gave the opportunity to use state-of-the-art fiber optics technology for on-line and real-time monitoring of this bioprocess. Time profiles of biomass concentration (measured as optical density (OD)) were very similar in the ST bioreactor and in the micro-bioreactor, with a highly reproducible yeast growth in these two scale-down platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号