首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoubiquitination is a nonproteolytic signal involved in a network of several different physiological processes. Recently, monoubiquitination has been discovered as a new post-transductional modification of the estrogen receptor α (ERα). However, at present no information is available about the role of the cognate ligand 17β-estradiol (E2) in modulating this receptor post-transductional modification. Thus, we studied the E2-dependent modulation of ERα monoubiquitination in different cell lines. Here, we report that ERα monoubiquitination isnegatively modulated by E2. These results demonstrate thatERα monoubiquitination represents a new signalling modification that may modulate the E2:ERα-regulated cellular processes.  相似文献   

2.
3.
4.
Estrogen induces G protein-dependent nongenomic signaling in a variety of cell types via the activation of a plasma membrane-associated subpopulation of estrogen receptor alpha (ER alpha). Using pull-down experiments with purified recombinant proteins, we now demonstrate that ER alpha binds directly to G alpha i and G betagamma. Mutagenesis and the addition of blocking peptide reveals that this occurs via amino acids 251-260 and 271-595 of ER alpha, respectively. Studies of ER alpha complexed with heterotrimeric G proteins further show that estradiol causes the release of both G alpha i and G betagamma without stimulating GTP binding to G alpha i. Moreover, in COS-7 cells, the disruption of ER alpha-G alpha i interaction by deletion mutagenesis of ER alpha or expression of blocking peptide, as well as G betagamma sequestration with beta-adrenergic receptor kinase C terminus, prevents nongenomic responses to estradiol including src and erk activation. In endothelial cells, the disruption of ER alpha-G alpha i interaction prevents estradiol-induced nitric oxide synthase activation and the resulting attenuation of monocyte adhesion that contributes to estrogen-related cardiovascular protection. Thus, through direct interactions, ER alpha mediates a novel mechanism of G protein activation that provides greater diversity of function of both the steroid hormone receptor and G proteins.  相似文献   

5.
The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca2+ entry step in transcellular Ca2+ re-absorption in the kidney. The regulation of transmembrane Ca2+ flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD2) cells at mRNA and protein levels. We demonstrate that 17β-estradiol (E2) is involved in the regulation of Ca2+ influx in these cells via the epithelial Ca2+ channels TRPV5. By combining whole-cell patch-clamp and Ca2+-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50 nM E2 rapidly (<5 min) induced a transient increase in inward whole-cell currents and intracellular Ca2+ via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E2 in kidney cells. Furthermore, the results suggest calcitropic effects of E2. The results are discussed in relation to present concepts of non-genomic actions of E2 in Ca2+ homeostasis.  相似文献   

6.
Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy.  相似文献   

7.
Skeletal muscles express estrogen receptor (ER) α and ERβ. However, the roles of estrogens acting through the ERs in skeletal muscles remain unclear. The effects of 17β-estradiol (E2) on myogenesis were studied in C2C12 myoblasts. E2 and an ERα-selective agonist propylpyrazole-triol depressed myosin heavy chain (MHC), tropomyosin, and myogenin levels and repressed the fusion of myoblasts into myotubes. ER antagonist ICI 182,780 cancelled E2-repressed myogenesis. E2 induced ubiquitin-specific peptidase 19 (USP19) expression during myogenesis. E2 replacement increased USP19 expression in the gastrocnemius and soleus muscles of ovariectomized mice. Knockdown of USP19 inhibited E2-repressed myogenesis. Mutant forms of USP19 lacking deubiquitinating activity increased MHC and tropomyosin levels. E2 decreased ubiquitinated proteins during myogenesis, and the E2-decreased ubiquitinated proteins were increased by knockdown of USP19. Propylpyrazole-triol increased USP19 expression, and ICI 182,780 inhibited E2-increased USP19 expression. Overexpression of ERα or knockdown of ERβ enhanced the effects of E2 on the levels of USP19, MHC, and tropomyosin, whereas knockdown of ERα, overexpression of ERβ, or an ERβ-selective agonist diarylpropionitrile abolished their effects. A mutant form of ERα that is constitutively localized in the nucleus increased USP19 expression and decreased MHC and tropomyosin expression in the presence of E2. Furthermore, in skeletal muscle satellite cells, E2 inhibited myogenesis and increased USP19 expression, and diarylpropionitrile repressed E2-increased USP19 expression. These results demonstrate that (i) E2 induces USP19 expression through nuclear ERα, (ii) increased USP19-mediated deubiquitinating activity represses myogenesis, and (iii) ERβ inhibits ERα-activated USP19 expression.  相似文献   

8.
β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell death without caspase activation. β-Lapachone increased PI uptake and HMGB-1 release to extracellular space, which are markers of necrotic cell death. Necrostatin-1 (a RIP1 kinase inhibitor) markedly inhibited β-lapachone-induced cell death and HMGB-1 release. In addition, β-lapachone activated poly (ADP-ribosyl) polymerase-1(PARP-1) and promoted AIF release, and DPQ (a PARP-1 specific inhibitor) or AIF siRNA blocked β-lapachone-induced cell death. Furthermore, necrostatin-1 blocked PARP-1 activation and cytosolic AIF translocation. We also found that β-lapachone-induced reactive oxygen species (ROS) production has an important role in the activation of the RIP1-PARP1-AIF pathway. Finally, β-lapachone-induced cell death was inhibited by dicoumarol (a NQO-1 inhibitor), and NQO1 expression was correlated with sensitivity to β-lapachone. Taken together, our results demonstrate that β-lapachone induces programmed necrosis through the NQO1-dependent ROS-mediated RIP1-PARP1-AIF pathway.  相似文献   

9.
10.
Oleuropein is one of the most abundant phenolic compounds found in olives. Epidemiological studies have indicated that an increasing intake of olive oil can significantly reduce the risk of breast cancer. However, the potential effect(s) of oleuropein on estrogen receptor (ER)-negative breast cancer is not fully understood. This study aims to understand the anticancer effects and underlying mechanism(s) of oleuropein on ER-negative breast cancer cells in vitro. The effect of oleuropein on the viability of breast cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by flow cytometric analysis, nuclear factor-κB (NF-κB) activation by DNA binding/reporter assays and protein expression by Western blot analysis. In the present report, thiazolyl blue tetrazolium bromide assay results indicated that oleuropein inhibited the viability of breast cancer cells, and its effects were more pronounced on MDA-MB-231 as compared with MCF-7 cells. It was further found that oleuropein increased the level of reactive oxygen species and also significantly inhibited cellular migration and invasion. In addition, the activation of NF-κB was abrogated as demonstrated by Western blot analysis, NF-κB-DNA binding, and luciferase assays. Overall, the data indicates that oleuropein can induce substantial apoptosis via modulating NF-κB activation cascade in breast cancer cells.  相似文献   

11.
Levofloxacin has been reported to have cytotoxicity to chondrocytes in vitro. And 17β-estradiol has been widely studied for its protective effects against cell apoptosis. Based on apoptotic cell model induced by levofloxacin, the purpose of this study was to explore the mechanism by which 17β-estradiol protects rat nucleus pulposus cells from apoptosis. Inverted phase-contrast microscopy, flow cytometry, and caspase-3 activity assay were used to find that levofloxacin induced marked apoptosis, which was abolished by 17β-estradiol. Interestingly, estrogen receptor antagonist, ICI182780, and functional blocking antibody to α2β1 integrin, both prohibited the effect of 17β-estradiol. Simultaneously, levofloxacin decreased cellular binding ability to type II collagen, which was also reversed by 17β-estradiol. Furthermore, western blot and real-time quantitative PCR were used to find that integrin α2β1 was responsible for estrogen-dependent anti-apoptosis, which was time–response and dose–response effect. 17β-estradiol was proved for the first time to protect rat nucleus pulposus cells against levofloxacin-induced apoptosis by upregulating integrin α2β1 signal pathway.  相似文献   

12.
Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene expression in cells. The effects prevail at hundreds of gene loci in the proximity of estrogen- and androgen-responsive elements and many more such loci through intra- and even inter-chromosomal level regulation. Such a memory system should be active in a flexible manner during the early development of vertebrates, and later replaced to establish more stable marks on genomic DNA. In mammals, DNA methylation is utilized as a very stable mark for silencing of the ERα and AR isoform expression during cancer cell and normal brain development. The factors affecting the DNA methylation of the ERα and AR genes in cells include estrogen and androgen. Since testosterone induces brain masculinization through its aromatization to estradiol in a narrow time window of the perinatal stage in rodents, the autoregulation of estrogen receptors, especially the predominant form of ERα, at the level of DNA methylation to set up the “cell memory” affecting the sexually differentiated status of brain function has been attracting increasing attention. The alternative usage of the androgen-AR system for brain masculinization and estrogenic regulation of AR expression in some species imply that the DNA methylation pattern of the AR gene can be established by closely related but different systems for sex steroid-induced phenomena, including brain masculinization.  相似文献   

13.
ABSTRACT

Although the Epstein-Barr virus (EBV) infection is usually asymptomatic, a primary encounter with the virus can cause mononucleosis. EBV infection is also strongly associated with lymphoma and epithelial cancers. The structure and infection mechanism of EBV have been well studied, but the EBV-encoded G protein-coupled receptor, BILF1, is not fully understood. Here, it was found that the EBV BILF1 was expressed early in the viral lytic cycle and its ectopic expression strikingly upregulated the ICAM-1 expression in Raji cells. The positive effect of BILF1 on the ICAM-1 promoter was observed and the BILF1 deficiency attenuated ICAM-1 promoter activity. Moreover, NF-κB binding sites were important for the regulation of ICAM-1 promoter by BILF1. Furthermore, BILF1 reduced the constitutive level of the I?B-a protein and increased the amount of nuclear NF-?B in Raji cells. In conclusion, this study determined that BILF1 upregulated ICAM-1 in a mechanism involving NF-?B.  相似文献   

14.
15.
Kotula-Balak  M.  Gorowska-Wojtowicz  E.  Milon  A.  Pawlicki  P.  Tworzydlo  W.  Płachno  B. J.  Krakowska  I  Hejmej  A.  Wolski  J. K.  Bilinska  B. 《Protoplasma》2020,257(4):1149-1163
Protoplasma - Leydig cell tumors (LCT) are the most common type of testicular stromal tumor. Herein, we investigate the G protein-coupled estrogen receptor (GPER) and peroxisome...  相似文献   

16.
Enzalutamide's accepted mode of action is by targeting the androgen receptor's (AR) activity. In clinical practice, enzalutamide demonstrates a good benefit-risk profile for the treatment of advanced prostate cancer (PC), even after poor response to standard antihormonal treatment. However, since both, well-established antiandrogens and enzalutamide, target AR functionality, we hypothesized that additional unknown mechanisms might be responsible for enzalutamide's superior anticancer activity. In the current study, PC cells were incubated with enzalutamide and enzalutamide-dependent modulation of apoptotic mechanisms were assessed via Western blot analysis, TDT-mediated dUTP-biotin nick end-labeling assay, and nuclear morphology assay. Alterations of heat shock protein (HSP), AR, and estrogen receptor (ER) expression were examined by Western blot analysis. Enzalutamide attenuated the proliferation of PC cells in a time- and dose-dependent manner. In the presence of enzalutamide, apoptosis occurred which was shown by increased BAX expression, decreased Bcl-2 expression, nuclear pyknosis, and genomic DNA fragmentation. Moreover, enzalutamide inhibited the expression of HSPs primarily involved in steroid receptor stabilization and suppressed AR and ERβ1 expression. This study demonstrates for the first time that enzalutamide treatment of PC cells triggers varying molecular mechanisms resulting in antiproliferative effects of the drug. In addition to the well-characterized antagonistic inhibition of AR functionality, we have shown that enzalutamide also affects the intracellular synthesis of steroid receptor-associated HSPs, thereby diminishing the expression of AR and ERβ1 proteins and inducing apoptotic pathways. According to an indirect attenuation of HSP-associated factors such as steroid receptors, endometrial carcinoma, uterine leiomyosarcoma, and mamma carcinoma cells also demonstrated inhibited cell growth in the presence of enzalutamide. Our data, therefore, suggest that enzalutamide's high efficacy is at least partially independent of AR and p53 protein expression, which are frequently lost in advanced PC.  相似文献   

17.
Du J  Zhou N  Liu H  Jiang F  Wang Y  Hu C  Qi H  Zhong C  Wang X  Li Z 《PloS one》2012,7(4):e35957
Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER-negative human breast cancer.  相似文献   

18.
19.
20.
Mas-related G protein-coupled receptor D (MrgprD) is mainly expressed in small-diameter sensory neurons of the dorsal root ganglion (DRG). Results from previous studies suggest that MrgprD participates in mechanical hyperalgesia and nerve injury-induced neuropathic pain. However, it remains elusive whether and how MrgprD is involved in inflammatory pain. Here, we used a mouse model of chronic inflammatory pain established by intraperitoneal administration of lipopolysaccharide (LPS). The LPS injection induced an evident peripheral neuroinflammation and mechanical hyperalgesia in the mice and increased MrgprD expression in the DRG. The LPS administration also augmented the proportion of MrgprD-expressing neurons in the lumbar 4 DRG. Behaviorally, the LPS-induced hypersensitivities to mechanical and cold stimuli, but not to a heat stimulus, were substantially attenuated in Mrgprd-knockout mice compared with wildtype littermates. Mrgprd deletion in DRGs suppressed the LPS-triggered activation of the NF-κB signaling pathway and attenuated LPS-induced up-regulation of pro-inflammatory factors. Moreover, ectopic overexpression of MrgprD in HEK293 cells stably expressing mouse toll-like receptor 4 (TLR4) markedly promoted the LPS-induced NF-κB activation and enhanced NF-κB's DNA-binding activity. Furthermore, MrgprD physically interacted with TGF-β-activated kinase 1 (TAK1) and I-kappa-B-kinase (IKK) complexes, but not with mitogen-activated protein kinases (MAPKs) in mouse DRGs. In macrophage-like RAW 264.7 cells, MrgprD also interacted with TAK1 and IKK complex, and the treatment of MrgprD agonist elicited the activation of NF-κB signaling, but not of mitogen-activated protein kinases (MAPKs) signaling pathway. Our findings indicate that MrgprD facilitates the development of LPS-triggered persistent inflammatory hyperalgesia by promoting canonical NF-κB activation, highlighting the important roles of MrgprD in NF-κB-mediated inflammation and chronic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号