首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NRPSs (non-ribosomal peptide synthetases) and PKSs (polyketide synthases) require post-translational phosphopantetheinylation to become active. This reaction is catalysed by a PPTase (4'-phosphopantetheinyl transferase). The ppt gene of Penicillium chrysogenum, encoding a protein that shares 50% similarity with the stand-alone large PPTases, has been cloned. This gene is present as a single copy in the genome of the wild-type and high-penicillin-producing strains (containing multiple copies of the penicillin gene cluster). Amplification of the ppt gene produced increases in isopenicillin N and benzylpenicillin biosynthesis. A PPTase-defective mutant (Wis54-PPT(-)) was obtained. It required lysine and lacked pigment and penicillin production, but it still synthesized normal levels of roquefortine. The biosynthesis of roquefortine does not appear to involve PPTase-mediated modification of the synthesizing enzymes. The PPT(-) mutant did not require fatty acids, which indicates that activation of the fatty acid synthase is performed by a different PPTase. Complementation of Wis54-PPT(-) with the ppt gene restored lysine biosynthesis, pigmentation and penicillin production, which demonstrates the wide range of processes controlled by this gene.  相似文献   

2.
In filamentous fungi, Sfp-type 4′-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary (α-aminoadipate reductase [AAR]) and secondary (polyketide synthases and nonribosomal peptide synthetases) metabolism. We cloned the PPTase gene PPT1 of the maize anthracnose fungus Colletotrichum graminicola and generated PPTase-deficient mutants (Δppt1). Δppt1 strains were auxotrophic for Lys, unable to synthesize siderophores, hypersensitive to reactive oxygen species, and unable to synthesize polyketides (PKs). A differential analysis of secondary metabolites produced by wild-type and Δppt1 strains led to the identification of six novel PKs. Infection-related morphogenesis was affected in Δppt1 strains. Rarely formed appressoria of Δppt1 strains were nonmelanized and ruptured on intact plant. The hyphae of Δppt1 strains colonized wounded maize (Zea mays) leaves but failed to generate necrotic anthracnose disease symptoms and were defective in asexual sporulation. To analyze the pleiotropic pathogenicity phenotype, we generated AAR-deficient mutants (Δaar1) and employed a melanin-deficient mutant (M1.502). Results indicated that PPT1 activates enzymes required at defined stages of infection. Melanization is required for cell wall rigidity and appressorium function, and Lys supplied by the AAR1 pathway is essential for necrotrophic development. As PPTase-deficient mutants of Magnaporthe oryzea were also nonpathogenic, we conclude that PPTases represent a novel fungal pathogenicity factor.  相似文献   

3.
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (DeltacfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, DeltafluG, and DeltatmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both DeltatmpA and DeltafluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.  相似文献   

4.
Trichoderma virens is a ubiquitous soil fungus successfully used in biological control due to its efficient colonization of plant roots. In fungi, 4-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary and secondary metabolism. Therefore, we cloned the PPTase gene ppt1 from T. virens and generated PPTase-deficient (?ppt1) and overexpressing strains to investigate the role of this enzyme in biocontrol and induction of plant defense responses. The ?ppt1 mutants were auxotrophic for lysine, produced nonpigmented conidia, and were unable to synthesize nonribosomal peptides. Although spore germination was severely compromised under both low and high iron availability, mycelial growth occurred faster than the wild type, and the mutants were able to efficiently colonize plant roots. The ?ppt1 mutants were unable of inhibiting growth of phytopathogenic fungi in vitro. Arabidopsis thaliana seedlings co-cultivated with wild-type T. virens showed increased expression of pPr1a:uidA and pLox2:uidA markers, which correlated with enhanced accumulation of salicylic acid (SA), jasmonic acid, camalexin, and resistance to Botrytis cinerea. Co-cultivation of A. thaliana seedlings with ?ppt1 mutants compromised the SA and camalexin responses, resulting in decreased protection against the pathogen. Our data reveal an important role of T. virens PPT1 in antibiosis and induction of SA and camalexin-dependent plant defense responses.  相似文献   

5.
邱文  兰咏哲  王迪  黄劲  廖万清  康颖倩 《菌物学报》2019,38(8):1341-1349
新型隐球菌是一种具有荚膜的重要临床致病真菌。本课题组在前期工作中发现CNAG_01032基因可能引起不同来源菌株的表型差异,本研究在此基础上以新型隐球菌临床来源菌株IFM56800(C1)、IFM56769(C2)为背景构建CNAG_01032基因敲除突变体,并检测突变株和野生型菌株经典毒力因子变化情况;使用API 20C AUX测试系统测试突变株和野生型菌株对19种糖的利用情况;使用尾静脉注射法感染BALB/c雌性小鼠进行致病性检测。结果显示:成功构建以临床株C1、C2为背景的CNAG-01032基因敲除突变株;突变株在37℃生长、黑色素产生与野生型菌株无显著差异,但荚膜厚度分别比C1、C2减少16.4%、18.2%;两基因敲除菌株均不能分解利用纤维二糖;致病性与野生型菌株无显著差异。新型隐球菌CNAG_01032基因可能参与临床来源菌株IFM56800、IFM56769的荚膜合成和纤维二糖的代谢。  相似文献   

6.
Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under normal and stress conditions and required for full virulence on barley plants.  相似文献   

7.
Extraintestinal pathogenic Escherichia coli (ExPEC) use siderophores to sequester iron during infection. Enterobactin and salmochelins are catecholate siderophores produced by some ExPEC strains and other pathogenic enterobacteria. Siderophore export and synthesis mutants of avian ExPEC strain χ7122 were tested in a chicken infection model. In single-strain infections, siderophore-negative (ΔentDΔiuc), ΔentS and ΔentSΔiroC export mutants were attenuated in tissues and blood, whereas the ΔiroC export mutant was only attenuated in blood. Interestingly, the ΔentD mutant, producing only aerobactin, retained full virulence, and loss of entD in the ΔentSΔiroC mutant restored virulence. LC-MS/MS quantification of siderophores in export mutants demonstrated that loss of entS impaired enterobactin and mono-glucosylated enterobactin secretion, whereas loss of iroC impaired di- and tri-glucosylated enterobactin secretion. Loss of entS and/or iroC resulted in intracellular accumulation and increased secretion of siderophore monomers. Catecholate siderophore export mutants also demonstrated decreased fitness in a co-challenge infection model. By contrast, catecholate siderophore synthesis mutants (ΔentD and ΔiroB) competed as well as the wild-type strain. Results establish that EntS and IroC mediate specific export of catecholate siderophores and the role of these exporters for ExPEC virulence is contingent on enterobactin synthesis, which is not required when other siderophores like aerobactin are functional.  相似文献   

8.
9.
10.
Cochliobolus sativus is a plant pathogenic fungus that causes spot blotch on barley and wheat. Virulence of a pathotype-2 isolate (ND90Pr) on barley cultivar Bowman was previously determined to be controlled by a single locus. To identify DNA markers associated with this virulence locus, amplified fragment length polymorphism (AFLP) analysis was conducted on 104 progeny isolates derived from a cross between isolates ND90Pr (exhibiting high virulence on Bowman) and ND93-1 (exhibiting low virulence on Bowman). Among 115 AFLP markers identified, 14 were linked to the virulence locus VHv1 in isolate ND90Pr, six of which co-segregated with VHv1. Two (E-AG/M-CA-207 and E-AG/M-CG-121) of the six co-segregating AFLP markers were cloned and used to probe genomic DNAs from the fungal parents and progeny. Both markers hybridized only with DNAs from ND90Pr and the virulent progeny. These two cloned markers were also used as probes to survey field isolates of C. sativus collected from different regions of the world and again only hybridized to DNAs from isolates that had the same virulence phenotype as ND90Pr. The results of this study indicate that E-AG/M-CA-207 and E-AG/M-CG-121 are closely linked to VHv1 and are unique to isolates carrying the virulence locus. Development of a linkage group, coupled with the identification of closely linked molecular markers, will facilitate the cloning of the virulence gene VHv1 in C. sativus by map-based cloning.  相似文献   

11.
A molecular genetic map was constructed and an electrophoretic karyotype was resolved for Cochliobolus sativus, the causal agent of spot blotch of barley and wheat. The genetic map consists of 27 linkage groups with 97 amplified fragment length polymorphism (AFLP) markers, 31 restriction fragment length polymorphism (RFLP) markers, two polymerase chain reaction amplified markers, the mating type locus (CsMAT), and a gene (VHv1) conditioning high virulence on barley cv. Bowman. These linkage groups covered a map distance of 849 cM. The virulence gene VHv1 cosegregated with six AFLP markers and was mapped on one of the major linkage groups. Fifteen chromosome-sized DNAs were resolved in C. sativus isolates ND93-1 and ND9OPr with contour-clamped homogeneous electric field (CHEF) electrophoresis combined with telomere probe analysis of comigrating chromosome-sized DNAs. The chromosome sizes ranged from 1.25 to 3.80 Mbp, and the genome size of the fungus was estimated to be approximately 33 Mbp. By hybridizing genetically mapped RFLP and AFLP markers to CHEF blots, 25 of the 27 linkage groups were assigned to specific chromosomes. The barley-specific virulence locus VHv1 was localized on a chromosome of 2.80 Mbp from isolate ND9OPr in the CHEF gel. The total map length of the fungus was estimated to be at least 1,329 cM based on the map distance covered by the linked markers and the estimated gaps. Therefore, the physical to genetic distance ratio is approximately 25 kb/cM. Construction of a high-resolution map around target loci will facilitate the cloning of the genes conferring virulence and other characters in C. sativus by a map-based cloning strategy.  相似文献   

12.
Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.  相似文献   

13.
Response regulator (RR) proteins are core elements of the high-osmolarity glycerol (HOG) pathway, which plays an important role in the adaptation of fungi to a variety of environmental stresses. In this study, we constructed deletion mutants of two putative RR genes, FgRRG-1 and FgRRG-2, which are orthologues of Neurospora crassa RRG-1 and RRG-2, respectively. The FgRRG-1 deletion mutant (ΔFgRrg1-6) showed increased sensitivity to osmotic stress mediated by NaCl, KCl, sorbitol or glucose, and to metal cations Li(+) , Ca(2+) and Mg(2+) . The mutant, however, was more resistant than the parent isolate to dicarboximide and phenylpyrrole fungicides. Inoculation tests showed that the mutant exhibited decreased virulence on wheat heads. Quantitative real-time polymerase chain reaction assays indicated that the expression of FgOS-2, the putative downstream gene of FgRRG-1, was decreased significantly in ΔFgRrg1-6. All of the defects were restored by genetic complementation of ΔFgRrg1-6 with the wild-type FgRRG-1 gene. Different from the FgRRG-1 deletion mutant, FgRRG-2 deletion mutants were morphologically indistinguishable from the wild-type progenitor in virulence and in sensitivity to the dicarboximide fungicide iprodione and osmotic stresses. These results indicate that the RR FgRrg-1 of F. graminearum is involved in the osmotic stress response, pathogenicity and sensitivity to dicarboximide and phenylpyrrole fungicides and metal cations.  相似文献   

14.
The genome of Aspergillus fumigatus encodes two isoforms of the catalytic subunit of the cAMP-dependent Protein Kinase (PKA). Although deletion of the class I isoform, pkaC1, leads to an attenuation of virulence, the function of the class II subunit, PkaC2, was previously uninvestigated. In this report, we demonstrate that both isoforms act in concert to support various physiologic processes that promote the virulence of this pathogen. Whereas pkaC1 and pkaC2 single-deletion mutants display wild-type conidial germination, a double-deletion mutant is delayed in germination in response to environmental nutrients. Furthermore, PkaC1 and PkaC2 interact to positively regulate flux through the carbohydrate catabolic pathway and, consequently, the ΔpkaC1ΔpkaC2 mutant is unable to grow on low glucose concentrations. Importantly, the reduced germinative capacity and inability to utilize glucose observed for the ΔpkaC1ΔpkaC2 strain correlated with an inability of the mutant to establish infection in a murine model. Conversely, overexpression of pkaC2 both promotes the in vitro growth on glucose, and restores the fungal burden and mortality associated with the ΔpkaC1 to that of the wild-type organism. Taken together, these data demonstrate the functional capacity of pkaC2 and emphasize the importance of PKA-mediated metabolic control in the pathogenic potential of A. fumigatus.  相似文献   

15.
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins from fatty acid synthetases (FASs) in primary metabolism and polyketide synthetases (PKSs) and non-ribosomal polypeptide synthetases (NRPSs) in secondary metabolism. Bacteria typically harbor one PPTase specific for carrier proteins of primary metabolism (ACPS-type PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism (Sfp-type PPTases). Anguibactin, an important virulent factor in Vibrio anguillarum serotype O1, has been reported to be synthesized by a nonribosomal peptide synthetases (NRPS) system encoded on a 65-kb virulent plasmid pJM1 from strain 775 of V. anguillarum serotype O1, and the PPTase, necessary for the activation of the anguibactin-NRPS, is therefore expected to lie on the pJM1 plasmid. In this work, a putative PPTase gene, angD, was first identified on pEIB1 plasmid (a pJM1-like plasmid) from a virulent strain MVM425 of V. anguillarum serotype O1. A recombinant clone carrying complete angD was able to complement an Escherichia coli entD mutant deficient in Sfp-type PPTase. angD was overexpressed in E. coli and the resultant protein, AngD, was purified. Simultaneously, two carrier proteins involved in anguibactin-NRPS, ArCP and PCP, were overproduced in E. coli and purified. The purified AngD, PCP and ArCP were used to establish an in vitro enzyme reaction, and the PPTase activity of AngD was proved through HPLC analysis to detect the conversion of inactive carrier proteins to active carrier proteins in the reaction mixture. Co-expression of AngD with PCP or ArCP showed that AngD functioned well as a PPTase in vivo in E. coli, modifying PCP and ArCP completely.  相似文献   

16.
Serratia marcescens mutants defective in production of the red pigment prodigiosin and the biosurfactant serrawettin W1 in parallel were isolated by transposon mutagenesis of strain 274. Cloning of the DNA fragment required for production of these secondary metabolites with different chemical structures pointed out a novel open reading frame (ORF) named pswP. The putative product PswP (230 aa) has the distinct signature sequence consensus among members of phosphopantetheinyl transferase (PPTase) which phosphopantetheinylates peptidyl carrier protein (PCP) mostly integrated in the nonribosomal peptide synthetases (NRPSs) system. Since serrawettin W1 belongs to the cyclodepsipeptides, which are biosynthesized through the NRPSs system, and one pyrrole ring in prodigiosin has been reported as a derivative of L -proline tethered to phosphopantetheinylated PCP, the mutation in the single gene pswP seems responsible for parallel failure in production of prodigiosin and serrawettin W1.  相似文献   

17.
We identified two syntaxin-like SNARE genes, named GzSYN1 and GzSYN2, from the plant pathogenic ascomycete Gibberella zeae, and characterized the functions and cellular localization of these genes. The GzSYN1 deletion mutant (Δgzsyn1) had 71% reduced hyphal growth compared to the wild-type strain, but produced perithecia with normal ascospores. Δgzsyn2 had the same hyphal growth rate as the wild-type, but completely lost both self and female fertility. When Δgzsyn2 was spermatized for Δmat1-1 or Δmat1-2 strains, it retained its male fertility, but the ascus shape was abnormal and ascospore delimitation was delayed. The Δgzsyn1 and Δgzsyn2 virulence on barley was reduced by 67% and 75%, respectively, compared to the wild-type. The GFP::GzSYN1 fusion protein was localized in vesicles, vacuoles, plasma membranes, and septa, whereas GFP::GzSYN2 was found only in plasma membranes and septa. These results suggest that syntaxins have key roles in fungal development and virulence in G. zeae.  相似文献   

18.
19.
We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.  相似文献   

20.
Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号