首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Several 2-anilino- and 2-benzylamino-3-deaza-6-oxopurines [3-deazaguanines] and selected 8-methyl and 8-aza analogs have been synthesized. 7-Substituted N2-(3-ethyl-4-methylphenyl)-3-deazaguanines were potent and selective inhibitors of Gram+ bacterial DNA polymerase (pol) IIIC, and 7-substituted N2-(3,4-dichlorobenzyl)-3-deazaguanines were potent inhibitors of both pol IIIC and pol IIIE from Gram+ bacteria, but weakly inhibited pol IIIE from Gram− bacteria. Potent enzyme inhibitors in both classes inhibited the growth of Gram+ bacteria (MICs 2.5-10 μg/ml), and were inactive against the Gram− organism Escherichia coli. Several derivatives had moderate protective activity in Staphylococcus aureus-infected mice.  相似文献   

2.
Synthesis and antibacterial activity of peptide deformylase inhibitors   总被引:9,自引:0,他引:9  
Huntington KM  Yi T  Wei Y  Pei D 《Biochemistry》2000,39(15):4543-4551
Peptide deformylase catalyzes the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria. Its essential character in bacterial cells makes it an attractive target for antibacterial drug design. In this work, we have rationally designed and synthesized a series of peptide thiols that act as potent, reversible inhibitors of purified recombinant peptide deformylase from Escherichia coli and Bacillus subtilis. The most potent inhibitor has a K(I) value of 11 nM toward the B. subtilis enzyme. These inhibitors showed antibacterial activity against both Gram-positive and Gram-negative bacteria, with minimal inhibitory concentrations (MIC) as low as 5 microM ( approximately 2 microg/mL). The PDF inhibitors induce bacterial cell lysis and are bactericidal toward all four bacterial strains that have been tested, B. subtilis, Staphylococcus epidermidis, Enterococcus faecalis, and E. coli. Resistance evaluation of one of the inhibitors (1b) against B. subtilis showed that no resistant clone could be found from >1 x 10(9) cells. Quantitative analysis using a set of inhibitors designed to possess varying potencies against the deformylase enzyme revealed a linear correlation between the MIC values and the K(I) values. These results suggest that peptide deformylase is the likely molecular target responsible for the antibacterial activity of these inhibitors and is therefore a viable target for antibacterial drug design.  相似文献   

3.
Macrocyclic peptidyl hydroxamates were designed, synthesized, and evaluated as peptide deformylase (PDF) inhibitors. The most potent compound exhibited tight, slow-binding inhibition of Escherichia coli PDF (K(I)(*)=4.4 nM) and had potent antibacterial activity against Gram-positive bacterium Bacillus subtilis (MIC=2-4 microg/mL).  相似文献   

4.
5.
6.
Bacillus subtilis DNA polymerase III (pol III), an arylhydrazinopyrimidine-sensitive, replication-specific enzyme, was used to generate a non-precipitating rabbit antibody which specifically inhibited pol III activity in vitro. The antibody was used to examine structural relationships among several DNA polymerases, and it was linked covalently to agarose; the antibody:agarose was employed to develop a rapid, selective method of purification of catalytically active B. subtilis pol III.  相似文献   

7.
While beta-propeller phytases (BPPs) from Gram-positive bacteria do not carry disulfide bonding, their counterparts from Gram-negative bacteria contain cysteine residues that may form disulfide bonds. By molecular modeling, two amino acid residues of B. subtilis 168 phytase (168PhyA), Ser-161 and Leu-212, were mutated to cysteine residues. Although the double cysteine mutant was secreted from B. subtilis at an expression level that was 3.5 times higher than that of the wild type, the biochemical and enzymatic properties were unaltered. In CD spectrometric analysis, both enzymes exhibited similar apparent melting temperatures and mid-points of transition under thermal and guanidine hydrochloride induced denaturation, respectively. In enzyme assays, the mutant phytase exhibited a poor refolding ability after thermal denaturation. We postulate that the disulfide bond in BPP sequences from Gram-negative bacteria is beneficial to their stability in the periplasmic compartment. In contrast, the lack of periplasmic space in Bacillus species and the fact that Bacillus BPPs are released extracellularly may render disulfide bonds unnecessary. This may explain why in evolution, BPPs in Bacillus species do not carry disulfide bonds.  相似文献   

8.
The replication of the Bacillus subtilis bacteriophages SPP-1 and phi 105 is sensitive to 6-(p-hydroxyphenylazo)-uracil (HPUra), a selective inhibitor of replicative DNA synthesis of B. subtilis which acts specifically at the levels of a replication-specific polymerase, DNA polymerase III (pol III). The origin of the HPUra-sensitive polymerase required for phage replication was examined by comparison of the drug sensitivity of phage development in a normosensitive host with that in a host carrying azp-12, a polC mutation that specifies production of an HPUra-resistant pol III. azp-12 specified HPUra-resistant phage host pol III. The host polIII requirement for SPP-1 replication also was confirmed by the demonstration that phage development was temperature sensitive in a host mutant carrying the polC mutation mut-1 (ts). Examination of the pol III activity of crude and purified cell-free preparations derived from phage-infected cells did not indicate any detectable changes in the specific activity, purification behavior, or drug sensitivity of the enzyme.  相似文献   

9.
Cadmium uptake by growing cells of gram-positive and gram-negative bacteria   总被引:1,自引:0,他引:1  
The present study evaluates the effect of the cadmium (Cd2+) on the growth and protein synthesis of some Gram-positive (Staphylococcus aureus, Bacillus subtilis and Streptococcus faecium) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and the cadmium uptake by the same micro-organisms. The Gram-negative bacteria tested were less sensitive to metal ions than the Gram-positive, and P. aeruginosa was the most resistant. The Gram-negative bacteria were also able to accumulate higher amounts of cadmium during growth than the Gram-positive bacteria. The maximum values of specific metal uptake (microgram of Cd2+ incorporated per mg of protein) were: 0.52 for S. aureus, 0.65 for S. faecium, 0.79 for B. subtilis, 2.79 for E. coli and 24.15 for P. aeruginosa, respectively. The differences in the ability to accumulate metal found between Gram-negative and Gram-positive bacteria seems to account for different mechanisms of metal resistance.  相似文献   

10.
Abstract The Gram-positive soil bacterium Bacillus subtilis , generally regarded as an aerobe, grows under strict anaerobic conditions using nitrate as an electron acceptor and should be designated as a facultative anaerobe. Growth experiments demonstrated a lag phase of 24 to 36 hours after the shift from aerobic, to the onset of anaerobic respiratory growth. Anaerobically adapted cells grew without further lag phase after their transfer to fresh anaerobic growth medium. The cells change their morphology from rods to longer filament-like structures when moved from aerobic to anaerobic respiratory growth conditions. Surprisingly, anaerobically grown B. subtilis lost the capacity for sporulation. An investigation of the molecular basis of the switch between aerobic and anaerobic growth was initiated by the cloning of the genes encoding the respiratory nitrate reductase from B. subtilis . Oligonucleotides deduced from conserved amino acid sequence regions of eubacterial respiratory nitrate reductases and related enzymes were used for the isolation of the genes. Four open reading frames with significant homology to the E. coli respiratory nitrate reductase opérons ( narGHIJ, narZYWV ) were isolated and termed narGHJI . A chromosomal knock-out mutation of the B. subtilis nar operon totally abolished nitrate respiration.  相似文献   

11.
Bacterial twin arginine translocation (Tat) pathways have evolved to facilitate transport of folded proteins across membranes. Gram-negative bacteria contain a TatABC translocase composed of three subunits named TatA, TatB, and TatC. In contrast, the Tat translocases of most Gram-positive bacteria consist of only TatA and TatC subunits. In these minimal TatAC translocases, a bifunctional TatA subunit fulfils the roles of both TatA and TatB. Here we have probed the importance of conserved residues in the bifunctional TatAy subunit of Bacillus subtilis by site-specific mutagenesis. A set of engineered TatAy proteins with mutations in the cytoplasmic hinge and amphipathic helix regions were found to be inactive in protein translocation under standard growth conditions for B. subtilis or when heterologously expressed in Escherichia coli. Nevertheless, these mutated TatAy proteins did assemble into TatAy and TatAyCy complexes, and they facilitated membrane association of twin arginine precursor proteins in E. coli. Interestingly, most of the mutated TatAyCy translocases were salt-sensitive in B. subtilis. Similarly, the TatAC translocases of Bacillus cereus and Staphylococcus aureus were salt-sensitive when expressed in B. subtilis. Taken together, our present observations imply that salt-sensitive electrostatic interactions have critical roles in the preprotein translocation activity of certain TatAC type translocases from Gram-positive bacteria.  相似文献   

12.
Lipid-modified proteins play important roles at the interface between eubacterial cells and their environment. The importance of lipoprotein processing by signal peptidase II (SPase II) is underscored by the fact that this enzyme is essential for viability of the Gram-negative eubacterium Escherichia coli. In contrast, SPase II is not essential for growth and viability of the Gram-positive eubacterium Bacillus subtilis. This could be due to alternative amino-terminal lipoprotein processing, which was shown previously to occur in SPase II mutants of B. subtilis. Alternatively, uncleaved lipoprotein precursors might be functional. To explore further the importance of lipoprotein processing in Gram-positive eubacteria, an SPase II mutant strain of Lactococcus lactis was constructed. Although some of the 39 (predicted) lactococcal lipoproteins, such as PrtM and OppA, are essential for growth in milk, the growth of SPase II mutant L. lactis cells in this medium was not affected. Furthermore, the activity of the strictly PrtM-dependent extracellular protease PrtP, which is required for casein degradation, was not impaired in the absence of SPase II. Importantly, no alternative processing of pre-PrtM and pre-OppA was observed in cells lacking SPase II. Taken together, these findings show for the first time that authentic lipoprotein precursors retain biological activity.  相似文献   

13.
The preparation and biological evaluation of 5-substituted-6-hydroxy-2-(anilino)pyrimidinones as a new class of DNA polymerase IIIC inhibitors, required for the replication of chromosomal DNA in Gram-positive bacteria, are described. These new dGTP competitive inhibitors displayed good levels of in vitro inhibition and antibacterial activity against Staphylococcus aureus. A new class of dATP competitive inhibitors, 6-substituted-2-amino-5-alkyl-pyrimidin-4-ones, whose antibacterial activity was unaffected by serum, were identified.  相似文献   

14.
We have determined the three-dimensional structure of 6, 7-dimethyl-8-ribityllumazine synthase (lumazine synthase) from Brucella abortus, the infectious organism of the disease brucellosis in animals. This enzyme catalyses the formation of 6, 7-dimethyl-8-ribityllumazine, the penultimate product in the synthesis of riboflavin. The three-dimensional X-ray crystal structure of the enzyme from B. abortus has been solved and refined at 2.7 A resolution to a final R-value of 0.18 (R(free)=0.23). The macromolecular assembly of the enzyme differs from that of the enzyme from Bacillus subtilis, the only other lumazine synthase structure known. While the protein from B. subtilis assembles into a 60 subunit icosahedral capsid built from 12 pentameric units, the enzyme from B. abortus is pentameric in its crystalline form. Nonetheless, the active sites of the two enzymes are virtually identical indicating inhibitors to theses enzymes could be effective pharmaceuticals across a broad species range. Furthermore, we compare the structures of the enzyme from B. subtilis and B. abortus and describe the C teminus structure which accounts for the differences in quaternary structure.  相似文献   

15.
Bacillus subtilis strains isolated from cowdung (CD) had several beneficial attributes, which included biocontrol, plant growth promotion, sulphur (S) oxidation, phosphorus (P) solubilization and production of industrially important enzymes (amylase and cellulase). The B. subtilis strains from CD inhibited the in vitro growth of fungi, Fusarium oxysporum (25-34%) and Botryodiplodia theobromae (100%), isolated from the postharvest rots of yam (Dioscorea rotundata) tubers. Other than biocontrol, B. subtilis strains were able to promote root elongation in seedlings of Cicer arietinum up to 70-74% as compared to untreated seeds (control). B. subtilis strains had also the ability to oxidize elemental S to sulphate (2-15microgml(-1)) and showed distinct P-solubilization activity in vitro. In addition, the cultures showed cellulase activity in carboxy methyl cellulose medium (1.5-1.8mg of reducing sugar24h(-1)ml(-1)) and amylase activity in vitro.  相似文献   

16.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

17.
Elastase of B. subtilis 6a caused lysis of freshly grown cells of Gram-negative (Proteus vulgaris, Klebsiella pneumoniae, Salmonella typhi and Pseudomonas aeruginosa and Gram-positive (B. subtilis) bacteria. Heat killed and lyophilised Gram-positive and negative bacteria showed higher sensitivity to elastase. Both Gram-negative and Gram-positive bacteria were lysed maximally by elastase at pH 8.0. At this pH, activity of elastase was maximum in Tris-HCl and glycine-NaOH buffers followed by Tris-maleate and cacodylate buffers.  相似文献   

18.
Uracil-DNA glycosylase (UDG) is a conserved DNA repair enzyme involved in uracil excision from DNA. Here, we report the biochemical characterization of UDG encoded by Bacillus subtilis, a model low G+C Gram-positive organism. The purified enzyme removes uracil preferentially from single-stranded DNA over double-stranded DNA, exhibiting higher preference for U:G than U:A mismatches. Furthermore, we have identified key amino acids necessary for B. subtilis UDG activity. Our results showed that Asp-65 and His-187 are catalytic residues involved in glycosidic bond cleavage, whereas Phe-78 would participate in DNA recognition. Recently, it has been reported that B. subtilis phage φ29 encodes an inhibitor of the UDG enzyme, named protein p56, whose role has been proposed to ensure an efficient viral DNA replication, preventing the deleterious effect caused by UDG when it eliminates uracils present in the φ29 genome. In this work, we also show that a φ29-related phage, GA-1, encodes a p56-like protein with UDG inhibition activity. In addition, mutagenesis analysis revealed that residue Phe-191 of B. subtilis UDG is critical for the interaction with φ29 and GA-1 p56 proteins, suggesting that both proteins have similar mechanism of inhibition.  相似文献   

19.
20.
Bacteria are present extensively in the environment. Investigation of their antioxidant properties will be useful for further study on atrazine stress tolerance of bacteria and the defense mechanism of antioxidant enzymes against atrazine or other triazine herbicides. Superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and total antioxidant capacity (T-AOC) from one Gram-negative representative strain Escherichia coli K12 and one Gram-positive representative strain Bacillus subtilis B19, respectively, were tested for response to atrazine stress. The results indicated that SOD, CAT, GST and T-AOC were induced upon exposure to atrazine. The growth of two bacteria was better in the absence than in the presence of atrazine, indicating that atrazine can decrease bacterial growth. The changes of enzyme activities indicate the presence of oxidative stress. Oxidative stress induced by atrazine may be due to imbalance of redox potential in bacterial cells, which leads to bacterial metabolic disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号