首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Expression of artificial microRNAs (amiRNAs) in plants can target and degrade the invading viral RNA, consequently conferring virus resistance. Two amiRNAs, targeting the coding sequence shared by the 2a and 2b genes and the highly conserved 3′ untranslated region (UTR) of Cucumber mosaic virus (CMV), respectively, were generated and introduced into the susceptible tomato. The transgenic tomato plants expressing amiRNAs displayed effective resistance to CMV infection and CMV mixed with non-targeted viruses, including tobacco mosaic virus and tomato yellow leaf curl virus. A series of grafting assays indicate scions originated from the transgenic tomato plant maintain stable resistance to CMV infection after grafted onto a CMV-infected rootstock. However, the grafting assay also suggests that the amiRNA-mediated resistance acts in a cell-autonomous manner and the amiRNA signal cannot be transmitted over long distances through the vascular system. Moreover, transgenic plants expressing amiRNA targeting the 2a and 2b viral genes displayed slightly more effective to repress CMV RNA accumulation than transgenic plants expressing amiRNA targeting the 3′ UTR of viral genome did. Our work provides new evidence of the use of amiRNAs as an effective approach to engineer viral resistance in the tomato and possibly in other crops.  相似文献   

3.
Wheat streak mosaic virus (WSMV) is a persistent threat to wheat production, necessitating novel approaches for protection. We developed an artificial miRNA strategy against WSMV, incorporating five amiRNAs within one polycistronic amiRNA precursor. Using miRNA sequence and folding rules, we chose five amiRNAs targeting conserved regions of WSMV but avoiding off-targets in wheat. These replaced the natural miRNA in each of five arms of the polycistronic rice miR395, producing amiRNA precursor, FanGuard (FGmiR395), which was transformed into wheat behind a constitutive promoter. Splinted ligation detected all five amiRNAs being processed in transgenic leaves. Resistance was assessed over two generations. Three types of response were observed in T(1) plants of different transgenic families: completely immune; initially resistant with resistance breaking down over time; and initially susceptible followed by plant recovery. Deep sequencing of small RNAs from inoculated leaves allowed the virus sequence to be assembled from an immune transgenic, susceptible transgenic, and susceptible non-transgenic plant; the amiRNA targets were fully conserved in all three isolates, indicating virus replication on some transgenics was not a result of mutational escape by the virus. For resistant families, the resistance segregated with the transgene. Analysis in the T(2) generation confirmed the inheritance of immunity and gave further insights into the other phenotypes. Stable resistant lines developed no symptoms and no virus by ELISA; this resistance was classified as immunity when extracts failed to transmit from inoculated leaves to test plants. This study demonstrates the utility of a polycistronic amiRNA strategy in wheat against WSMV.  相似文献   

4.
RNA interference (RNAi)‐based tools are used in multiple organisms to induce antiviral resistance through the sequence‐specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi‐based tools include artificial microRNAs (amiRNAs) and synthetic trans‐acting small interfering RNAs (syn‐tasiRNAs). syn‐tasiRNAs have emerged as a promising antiviral tool allowing for the multi‐targeting of viral RNAs through the simultaneous expression of several syn‐tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn‐tasiRNA construct expressing four different syn‐tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn‐tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn‐tasiRNA lines was not exclusive of lines with high syn‐tasiRNA accumulation. Collectively, these results suggest that syn‐tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn‐tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn‐tasiRNA.  相似文献   

5.
6.
Niu QW  Lin SS  Reyes JL  Chen KC  Wu HW  Yeh SD  Chua NH 《Nature biotechnology》2006,24(11):1420-1428
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.  相似文献   

7.
8.
Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect‐mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off‐target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12–15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect‐mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process.  相似文献   

9.
Plant microRNAs (miRNA) guide cleavage of target mRNAs by DICER-like proteins, thereby reducing mRNA abundance. Native precursor miRNAs can be redesigned to target RNAs of interest, and one application of such artificial microRNA (amiRNA) technology is to generate plants resistant to pathogenic viruses. Transgenic Arabidopsis plants expressing amiRNAs designed to target the genome of two unrelated viruses were resistant, in a highly specific manner, to the appropriate virus. Here, we pursued two different goals. First, we confirmed that the 21-nt target site of viral RNAs is both necessary and sufficient for resistance. Second, we studied the evolutionary stability of amiRNA-mediated resistance against a genetically plastic RNA virus, TuMV. To dissociate selective pressures acting upon protein function from those acting at the RNA level, we constructed a chimeric TuMV harboring a 21-nt, amiRNA target site in a non-essential region. In the first set of experiments designed to assess the likelihood of resistance breakdown, we explored the effect of single nucleotide mutation within the target 21-nt on the ability of mutant viruses to successfully infect amiRNA-expressing plants. We found non-equivalency of the target nucleotides, which can be divided into three categories depending on their impact in virus pathogenicity. In the second set of experiments, we investigated the evolution of the virus mutants in amiRNA-expressing plants. The most common outcome was the deletion of the target. However, when the 21-nt target was retained, viruses accumulated additional substitutions on it, further reducing the binding/cleavage ability of the amiRNA. The pattern of substitutions within the viral target was largely dominated by G to A and C to U transitions.  相似文献   

10.
In contrast to hairpin RNAs, in which heterogeneous small RNAs are processed from double-stranded RNA to have potential off-target effects on endogenous other genes, artificial miRNAs (amiRNAs) have advantages of exquisite specificity and non-transitivity to thus target individual genes and groups of endogenous genes. Earlier studies showed that amiRNA engineering based on osa-miRNA528 precursor could efficiently trigger endogenous gene silencing and modulate agronomic traits in rice. However, both the expression efficiency of heterologous amiRNAs based on osa-miRNA528 precursor and the correlation of copy number with the relative expression level of amiRNAs remain unknown. In the present study, five amiRNAs (S9-1174, S9-1192, S11-864, S11-868 and S11-869) targeting different sites of S9 and S11 negative strands in rice dwarf virus (RDV) genome were constructed using endogenous osa-miRNA528 precursor as backbone. After identification by Northern blot, two amiRNAs (S9-1174 and S9-1192) targeting S9 negative strand in RDV genome were highly expressed, whereas in three tested amiRNAs targeting S11 negative strand in RDV genome, only two amiRNAs (S11-868 and S11-869) were processed efficiently. T0 generation transgenic rice containing amiRNAs (S9-1174, S9-1192, S11-868 and S11-869) exhibited different expression ratios of amiRNAs, accounting for 90.0, 90.0, 66.7 and 77.8 %, respectively. In addition, combination analysis with the relative amiRNA expression levels and its copy number revealed that the relative expression levels of amiRNAs had no relation to the copy number of T-DNA insert in transgenic rice.  相似文献   

11.
Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired.  相似文献   

12.
王健 《植物科学学报》2015,33(6):819-828
amiRNA(artificial microRNA)作为一种诱导基因发生特异性沉默的技术已在多种植物中应用,但设计出的不同amiRNAs在所转化株系中的沉默效率难以预测,因此对amiRNA载体的沉默效率进行预验证是非常必要的。本实验以丹参(Salvia miltiorrhiza)的1个MYB类转录因子基因SmPAP1的mRNA序列为amiRNA作用对象,并挑选2个经在线软件WMD3(Web MicroRNA Designer)设计的amiRNAs,分别命名为amiRNA1-SmPAP1和amiRNA2-SmPAP1,然后通过农杆菌介导将构建的2个amiRNA载体和SmPAP1过表达植物载体在烟草叶片细胞中进行瞬时共表达。结果显示,amiRNA2的表达丰度约是amiRNA1的2倍;amiRNA2对靶标SmPAP1的沉默效率约是amiRNA1的2.5倍;SmPAP1在mRNA和蛋白水平上均与相应amiRNA的表达水平呈显著负相关。因此,amiRNA在烟草细胞中的瞬时表达可快速、有效地对不同amiRNA沉默效果进行预验证,从而为后续的植物遗传转化研究提供重要参考。  相似文献   

13.
14.

Background

RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects.

Methodology/Principal findings

In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA.

Conclusions/Significance

Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.  相似文献   

15.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. They are produced through an enzyme-guided process called dicing and have an asymmetrical structure with two nucleotide overhangs at the 3′ ends. Artificial microRNAs (amiRNAs or amiRs) are designed to mimic the structure of miRNAs and can be used to silence specific genes of interest. Traditionally, amiRNAs are designed based on an endogenous miRNA precursor with certain mismatches at specific positions to increase their efficiency. In this study, the authors modified the highly expressed miR168a in Arabidopsis thaliana by replacing the single miR168 stem-loop/duplex with tandem asymmetrical amiRNA duplexes that follow the statistical rules of miRNA secondary structures. These tandem amiRNA duplexes, called “two-hit” amiRNAs, were shown to have a higher efficiency in silencing GFP and endogenous PDS reporter genes compared to traditional “one-hit” amiRNAs. The authors also demonstrated the effectiveness of “two-hit” amiRNAs in silencing genes involved in miRNA, tasiRNA, and hormone signalling pathways, individually or in families. Importantly, “two-hit” amiRNAs were also able to over-express endogenous miRNAs for their functions. The authors compare “two-hit” amiRNA technology with CRISPR/Cas9 and provide a web-based amiRNA designer for easy design and wide application in plants and even animals.  相似文献   

16.
Yan F  Lu Y  Wu G  Peng J  Zheng H  Lin L  Chen J 《Journal of biotechnology》2012,160(3-4):146-150
Artificial miRNAs (amiRNAs) have been used successfully in various plants to silence endogenous genes or viral RNAs. The method of Schwab et al., widely used to construct amiRNAs, requires four PCRs. We describe a simplified method of constructing amiRNA based on the osa-MIR528 backbone using one PCR step by addition of prolonging sequence to the primers. The length of prolonging sequence needed in the osa-MIR528 precursor was determined. Using this method, we constructed amiRNA targeting the Nicotiana benthamiana UPF1 gene and showed that it functioned in silencing UPF1 expression in leaves when expressed transiently.  相似文献   

17.
The utility of artificial microRNAs (amiRNAs) to induce loss of gene function has been reported for many plant species, but expression efficiency of the different amiRNA constructs in different transgenic plants was less predictable. In this study, expressions of amiRNAs through the gene backbone of Arabidopsis miR168a were examined by both Agrobacterium-mediated transient expression and stable plant genetic transformation. A corresponding trend in expression of amiRNAs by the same amiRNA constructs between the transient and the stable expression systems was observed in the experiments. Plant genetic transformation of the constructs that were highly expressible in amiRNAs in the transient agro-infiltration assays resulted in generation of transgenic lines with high level of amiRNAs. This provides a simple method for rapid and effective selection of amiRNA constructs used for a time-consuming genetic transformation in plants.  相似文献   

18.

Background

The current vaccines failed to provide substantial protection against porcine reproductive and respiratory syndrome (PRRS) and the new vaccine development faces great challenges. Sialoadhesin (Sn) and CD163 are the two key receptors for PRRS virus (PRRSV) infection of porcine alveolar macrophages (PAMs), but the artificial microRNA (amiRNA) strategy targeting two viral receptors has not been described.

Methods

The candidate miRNAs targeting Sn or CD163 receptor were predicted using a web-based miRNA design tool and validated by transfection of cells with each amiRNA expression vector plus the reporter vector. The amiRNA-expressing recombinant adenoviruses (rAds) were generated using AdEasy Adenoviral Vector System. The rAd transduction efficiencies for pig cells were measured by flow cytometry and fluorescent microscopy. The expression and exosome-mediated secretion of amiRNAs were detected by RT-PCR. The knock-down of Sn or CD163 receptor by rAd- and/or exosome-delivered amiRNA was detected by quantitative RT-PCR and flow cytometry. The additive anti-PRRSV effect between the two amiRNAs was detected by quantitative RT-PCR and viral titration.

Results

All 18 amiRNAs validated were effective against Sn or CD163 receptor mRNA expression. Two rAds expressing Sn- or CD163-targeted amiRNA were generated for further study. The maximal rAd transduction efficiency was 62% for PAMs at MOI 800 or 100% for PK-15 cells at MOI 100. The sequence-specific amiRNAs were expressed efficiently in and secreted from the rAd-transduced cells via exosomes. The expression of Sn and CD163 receptors was inhibited significantly by rAd transduction and/or amiRNA-containing exosome treatment at mRNA and protein levels. Both PRRSV ORF7 copy number and viral titer were reduced significantly by transduction of PAMs with the two rAds and/or by treatment with the two amiRNA-containing exosomes. The additive anti-PRRSV effect between the two amiRNAs was relatively long-lasting (96 h) and effective against three different viral strains.

Conclusion

These results suggested that Sn- and CD163-targeted amiRNAs had an additive anti-PRRSV effect against different viral strains. Our findings provide new evidence supporting the hypothesis that exosomes can also serve as an efficient small RNA transfer vehicle for pig cells.
  相似文献   

19.
Duan CG  Wang CH  Fang RX  Guo HS 《Journal of virology》2008,82(22):11084-11095
Short-hairpin RNAs based on microRNA (miRNA) precursors to express the artificial miRNAs (amiRNAs) can specifically induce gene silencing and confer virus resistance in plants. The efficacy of RNA silencing depends not only on the nature of amiRNAs but also on the local structures of the target mRNAs. However, the lack of tools to accurately and reliably predict secondary structures within long RNAs makes it very hard to predict the secondary structures of a viral genome RNA in the natural infection conditions in vivo. In this study, we used an experimental approach to dissect how the endogenous silencing machinery acts on the 3′ untranslated region (UTR) of the Cucumber mosaic virus (CMV) genome. Transiently expressed 3′UTR RNAs were degraded by site-specific cleavage. By comparing the natural cleavage hotspots within the 3′UTR of the CMV-infected wild-type Arabidopsis to those of the triple dcl2/3/4 mutant, we acquired true small RNA programmed RNA-induced silencing complex (siRISC)-mediated cleavage sites to design valid amiRNAs. We showed that the tRNA-like structure within the 3′UTR impeded target site access and restricted amiRNA-RISC-mediated cleavage of the target viral RNA. Moreover, target recognition in the less-structured area also influenced siRISC catalysis, thereby conferring different degrees of resistance to CMV infection. Transgenic plants expressing the designed amiRNAs that target the putative RISC accessible target sites conferred high resistance to the CMV challenge from both CMV subgroup strains. Our work suggests that the experimental approach is credible for studying the course of RISC target recognition to engineer effective gene silencing and virus resistance in plants by amiRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号