首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
14-3-3 proteins are well-known universal regulators binding a vast number of partners by recognizing their phosphorylated motifs, typically located within the intrinsically disordered regions. The abundance of such phosphomotifs ensures the involvement of 14-3-3 proteins in sophisticated protein–protein interaction networks that govern vital cellular processes. Thousands of 14-3-3 partners have been either experimentally identified or predicted, but the spatiotemporal hierarchy of the processes based on 14-3-3 interactions is not clearly understood. This is exacerbated by the lack of available structural information on full regulatory complexes involving 14-3-3, which resist high-resolution structural studies due to the presence of intrinsically disordered regions. Although deducing three-dimensional structures is of particular urgency, structural advances are lagging behind the rate at which novel 14-3-3 partners are discovered. Here I attempted to critically review the current state of the field and in particular to dissect the unknowns, focusing on questions that could help in moving the frontiers forward.  相似文献   

3.
14-3-3 proteins and the response to abiotic and biotic stress   总被引:1,自引:0,他引:1  
14-3-3 proteins function as regulators of a wide range of target proteins in all eukaryotes by effecting direct protein-protein interactions. Primarily, interactions between 14-3-3 proteins and their targets are mediated by phosphorylation at specific sites on the target protein. Hence, interactions with 14-3-3s are subject to environmental control through signalling pathways which impact on 14-3-3 binding sites. Because 14-3-3 proteins regulate the activities of many proteins involved in signal transduction, there are multiple levels at which 14-3-3 proteins may play roles in stress responses in higher plants. In this article, we review evidence which implicates 14-3-3 proteins in responses to environmental, metabolic and nutritional stresses, as well as in defence responses to wounding and pathogen attack. This evidence includes stress-inducible changes in 14-3-3 gene expression, interactions between 14-3-3 proteins and signalling proteins and interactions between 14-3-3 proteins and proteins with defensive functions.  相似文献   

4.
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3β and 14-3-3ε, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3ε competes with Go for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3ε sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by G protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with G, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.  相似文献   

5.
Many proteins that bind to a 14-3-3 column in competition with a 14-3-3-binding phosphopeptide have been purified from plant and mammalian cells and tissues. New 14-3-3 targets include enzymes of biosynthetic metabolism, vesicle trafficking, cell signalling and chromatin function. These findings indicate central regulatory roles for 14-3-3s in partitioning carbon among the pathways of sugar, amino acid, nucleotide and protein biosynthesis in plants. Our results also suggest that the current perception that 14-3-3s bind predominantly to signalling proteins in mammalian cells is incorrect, and has probably arisen because of the intensity of research on mammalian signalling and for technical reasons.  相似文献   

6.
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3–binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.  相似文献   

7.
14-3-3 proteins play an important role in a multitude of signalling pathways. The interactions between 14-3-3 and other signalling proteins, such as Raf and KSR (kinase suppressor of Ras), occur in a phospho-specific manner. Recently, a phosphorylation-independent interaction has been reported to occur between 14-3-3 and several proteins, for example 5-phosphatase, p75NTR-associated cell death executor (NADE) and the bacterial toxin Exoenzyme S (ExoS), an ADP-ribosyltransferase from Pseudomonas aeruginosa. In this study we have identified the amino acid residues on ExoS, which are responsible for its specific interaction with 14-3-3. Furthermore, we show that a peptide derived from ExoS, containing the 14-3-3 interaction site, effectively competes out the interaction between ExoS and 14-3-3. In addition, competition with this peptide blocks ExoS modification of Ras in our Ras modification assay. We show that the ExoS protein interacts with all isoforms of the 14-3-3 family tested. Moreover, in vivo an ExoS protein lacking the 14-3-3 binding site has a reduced capacity to ADP ribosylate cytoplasmic proteins, e.g. Ras, and shows a reduced capacity to change the morphology of infected cells.  相似文献   

8.
14-3-3 proteins find new partners in plant cell signalling   总被引:1,自引:0,他引:1  
  相似文献   

9.
The 14-3-3 proteins are important effectors of Ser/Thr phosphorylation in eukaryotic cells. Using mathematical modelling we investigated the roles of these proteins as effectors in signalling pathways that involve multi-phosphorylation events. We defined optimal conditions for positive and negative cross-talk. Particularly, synergistic signal interaction was evident at very different sets of binding affinities and phosphorylation kinetics. We identified three classes of 14-3-3 targets that all have two binding sites, but displayed synergistic interaction between converging signalling pathways for different ranges of parameter values. Consequently, these protein targets will respond differently to interventions that affect 14-3-3 binding affinities or phosphorylation kinetics.  相似文献   

10.
14-3-3 proteins: regulators of numerous eukaryotic proteins   总被引:7,自引:0,他引:7  
van Heusden GP 《IUBMB life》2005,57(9):623-629
14-3-3 proteins form a family of highly conserved proteins capable of binding to more than 200 different mostly phosphorylated proteins. They are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. 14-3-3 binding partners are involved in almost every cellular process and 14-3-3 proteins play a key role in these processes. 14-3-3 proteins interact with products encoded by oncogenes, with filament forming proteins involved in Alzheimer'ss disease and many other proteins related to human diseases. Disturbance of the interactions with 14-3-3 proteins may lead to diseases like cancer and the neurological Miller-Dieker disease. The molecular consequences of 14-3-3 binding are diverse and only partly understood. Binding of a protein to a 14-3-3 protein may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization or to the interaction with other proteins. Currently genome- and proteome-wide studies are contributing to a wider knowledge of this important family of proteins.  相似文献   

11.
In the simple metazoan Hydra a clear link between food supply and cell survival has been established. Whilst in plants 14-3-3 proteins are found to be involved in signalling cascades that regulate metabolism, in animals they have been shown to participate in cell survival pathways. In order to explore the possibility that 14-3-3 proteins in Hydra could be involved in regulating metabolism under different conditions of food supply, we have cloned two isoforms of 14-3-3 proteins. We show here that 14-3-3 proteins bind to phosphorylated targets in Hydra and form homo- and heterodimers in vitro. 14-3-3 proteins are localised in the cytoplasm of all cells and also in the nuclei of some epithelial cells. This nuclear localisation becomes more prominent during starvation. Moreover, 14-3-3 protein is present in large amounts in food granules and from this we conclude that it performs functions which are associated with metabolism and food storage in Hydra.  相似文献   

12.
A yeast two-hybrid screen performed to identify binding partners of the CaR (calcium-sensing receptor) intracellular tail identified the adaptor protein 14-3-3θ as a novel binding partner that bound to the proximal membrane region important for CaR expression and signalling. The 14-3-3θ protein directly interacted with the CaR tail in pull-down studies and FLAG-tagged CaR co-immunoprecipitated with EGFP (enhanced green fluorescent protein)-tagged 14-3-3θ when co-expressed in HEK (human embryonic kidney)-293 or COS-1 cells. The interaction between the CaR and 14-3-3θ did not require a putative binding site in the membrane-proximal region of the CaR tail and was independent of PKC (protein kinase C) phosphorylation. Confocal microscopy demonstrated co-localization of the CaR and EGFP-14-3-3θ in the ER (endoplasmic reticulum) of HEK-293 cells that stably expressed the CaR (HEK-293/CaR cells), but 14-3-3θ overexpression had no effect on membrane expression of the CaR. Overexpression of 14-3-3θ in HEK-293/CaR cells attenuated CaR-mediated Rho signalling, but had no effect on ERK (extracellular-signal-regulated kinase) 1/2 signalling. Another isoform identified from the library, 14-3-3ζ, exhibited similar behaviour to that of 14-3-3θ with respect to CaR tail binding, cellular co-localization and impact on receptor-mediated signalling. However, unlike 14-3-3θ, this isoform, when overexpressed, significantly reduced CaR plasma membrane expression. Results indicate that 14-3-3 proteins mediate CaR-dependent Rho signalling and may modulate the plasma membrane expression of the CaR.  相似文献   

13.
14.
Xanthurenic acid is an endogenous molecule leading to caspase-9 and -3 activation. Here we report that xanthurenic acid targets signalling proteins 14-3-3 into lysosomes leading to interruption protein/protein interaction. Xanthurenic acid changed the localisation of 14-3-3 in the cells. At a concentration of 10 and 20 microM the 14-3-3 was translocated into lysosomes. At these concentrations Bad and cofilin were dephosphorylated. Translocation of dephosphorylated Bad into mitochondria and cytochrome c release were observed. Cofilin dephosphorylation in the presence of xanthurenic acid was associated with lack of the apoptotic actin cytoskeleton disintegration. In conclusion xanthurenic acid accumulation in cells abolished the regulatory function of the proteins 14-3-3 in the cell physiology and caused misfolding of the proteins leading to cell pathology.  相似文献   

15.
16.
The proteins of the 14-3-3 family are universal adapters participating in multiple processes running in the cell. We describe the structure, isoform composition, and distribution of 14-3-3 proteins in different tissues. Different elements of 14-3-3 structure important for dimer formation and recognition of protein targets are analyzed in detail. Special attention is paid to analysis of posttranslational modifications playing important roles in regulation of 14-3-3 function. The data of the literature concerning participation of 14-3-3 in regulation of intercellular contacts and different elements of cytoskeleton formed by microfilaments are analyzed. We also describe participation of 14-3-3 in regulation of small G-proteins and protein kinases important for proper functioning of cytoskeleton. The data on the interaction of 14-3-3 with different components of microtubules are presented, and the probable role of 14-3-3 in developing of certain neurodegenerative diseases is discussed. The data of the literature concerning the role of 14-3-3 in formation and normal functioning of intermediate filaments are also reviewed. It is concluded that due to its adapter properties 14-3-3 plays an important role in cytoskeleton regulation. The cytoskeletal proteins that are abundant in the cell might compete with the other protein targets of 14-3-3 and therefore can indirectly regulate many intracellular processes that are dependent on 14-3-3.  相似文献   

17.
18.
14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a 'lynchpin', defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1-4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the -2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1-4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders.  相似文献   

19.
The mitotic inducer Cdc2 is negatively regulated, in part, by phosphorylation on tyrosine 15. Human Wee1 is a tyrosine-specific protein kinase that phosphorylates Cdc2 on tyrosine 15. Human Wee1 is subject to multiple levels of regulation including reversible phosphorylation, proteolysis, and protein-protein interactions. Here we have investigated the contributions made by 14-3-3 binding to human Wee1 regulation and function. We report that the interactions of 14-3-3 proteins with human Wee1 are reduced during mitosis and are stable in the presence of the protein kinase inhibitor UCN-01. A mutant of Wee1 that is incapable of binding to 14-3-3 proteins has lower enzymatic activity, and this likely accounts for its reduced potency relative to wild-type Wee1 in inducing a G(2) cell cycle delay when overproduced in vivo. These findings indicate that 14-3-3 proteins function as positive regulators of the human Wee1 protein kinase.  相似文献   

20.
The dimeric 14-3-3 protein family protects cells from apoptosis by regulating pro-apoptotic molecules. Conversely, the cationic lipid sphingosine is associated with physiological apoptosis and induces apoptosis in its own right by a largely undefined mechanism. We show here that sphingosine and 14-3-3 interact directly in the control of cell death. The binding of sphingosine to 14-3-3 proteins renders them phosphorylatable at the dimer interface, an event that abolishes the pro-survival signalling of 14-3-3. Sphingosine kinase 1 reduces availability of sphingosine for interaction with 14-3-3, thus inhibiting cell death and providing a new mechanistic insight into the role of this enzyme in cell survival and oncogenesis. Importantly, FTY720, a sphingosine analogue with apoptotic activity that is currently in phase III clinical trials for multiple sclerosis, acts in a similar manner to sphingosine in potentiating 14-3-3 phosphorylation. The biological significance of 14-3-3 phosphorylation was demonstrated with a non-phosphorylatable 14-3-3ζ mutant which retarded apoptosis induced by sphingosine and FTY720. These results demonstrate that direct association of sphingosine with 14-3-3 is required for 14-3-3 phosphorylation, and that this axis can control cell fate. Furthermore, these results suggest a new therapeutic activity for FTY720 as an anti-cancer agent based on this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号