共查询到10条相似文献,搜索用时 15 毫秒
1.
Continuous protein recovery from whey using liquid-solid circulating fluidized bed ion-exchange extraction 总被引:3,自引:0,他引:3
A liquid-solid circulating fluidized bed (LSCFB) continuous ion-exchange extraction system has been investigated for total protein recovery from whey solutions under various operating conditions. The effectiveness of a dynamic seal was evaluated between the riser and the downcomer, and the best conditions for the establishment of this seal were established. Start-up studies indicated that the system is robust and stable. Under optimal conditions, a productivity of 8.2 g of total protein removed per hour per kilogram of resin was achieved with a protein removal efficiency of 78.4%. However, higher overall protein recovery of up to 90% was also achieved under other conditions, with lower protein concentration in the effluent and a lower overall productivity. 相似文献
2.
Jahirul Mazumder Jingxu Zhu Amarjeet S. Bassi Ajay K. Ray 《Biotechnology and bioengineering》2009,104(1):111-126
Liquid–solid circulating fluidized bed (LSCFB) is an integrated two‐column (downcomer and riser) system which can accommodate two separate processes (adsorption and desorption) in the same unit with continuous circulation of the solid particles between the two columns. In this study, a mathematical model based on the assumption of homogeneous fluidization was developed considering hydrodynamics, adsorption‐desorption kinetics and liquid–solid mass transfer. The simulation results showed good agreement with the available experimental results for continuous protein recovery. A parametric sensitivity study was performed to better understand the influence of different operating parameters on the BSA adsorption and desorption capacity of the system. The model developed can easily be extended to other applications of LSCFB. Biotechnol. Bioeng. 2009; 104: 111–126 © 2009 Wiley Periodicals, Inc. 相似文献
3.
Jahirul Mazumder Jingxu Zhu Amarjeet S. Bassi Ajay K. Ray 《Biotechnology and bioengineering》2009,103(5):873-890
Like most real‐life processes, the operation of liquid–solid circulating fluidized bed (LSCFB) system for continuous protein recovery is associated with several objectives such as maximization of production rate and recovery of protein, and minimization of amount solid ion‐exchange resin requirement, all of which need to be optimized simultaneously. In this article, multiobjective optimization of a LSCFB system for continuous protein recovery was carried out using an experimentally validated mathematical model to find the scope for further improvements in its operation. Elitist non‐dominated sorting genetic algorithm with its jumping gene adaptation was used to solve a number of bi‐ and tri‐objective function optimization problems. The optimization resulted in Pareto‐optimal solution, which provides a broad range of non‐dominated solutions due to conflicting behavior of the operating parameters on the system performance indicators. Significant improvements were achieved, for example, the production rate at optimal operation increased by 33%, using 11% less solid compared to reported experimental results for the same recovery level. The effects of operating variables on the optimal solutions are discussed in detail. The multiobjective optimization study reported here can be easily extended for the improvement of LSCFB system for other applications. Biotechnol. Bioeng. 2009;103: 873–890. © 2009 Wiley Periodicals, Inc. 相似文献
4.
Zhao-qiu Zhou Long-long Ma Xiu-li Yin Chuang-zhi Wu Li-cheng Huang Chu Wang 《Biotechnology advances》2009,27(5):612
We investigated the solid particle flow characteristics and biomass gasification in a clapboard-type internal circulating fluidized bed reactor. The effect of fluidization velocity on particle circulation rate and pressure distribution in the bed showed that fluidization velocities in the high and low velocity zones were the main operational parameters controlling particle circulation. The maximum internal circulation rates in the low velocity zone came almost within the range of velocities in the high velocity zone, when uH/umf = 2.2–2.4 for rice husk and uH/umf = 3.5–4.5 for quartz sand. In the gasification experiment, the air equvalence ratio (ER) was the main controlling parameter. Rice husk gasification gas had a maximum heating value of around 5000 kJ/m3 when ER = 0.22–0.26, and sawdust gasification gas reached around 6000–6500 kJ/m3 when ER = 0.175–0.24. The gasification efficiency of rice husk reached a maximum of 77% at ER = 0.28, while the gasification efficiency of sawdust reached a maximum of 81% at ER = 0.25. 相似文献
5.
In this study, the detachment rates of various microbial species from the aerobic and anoxic biofilms in a circulating fluidized bed bioreactor (CFBB) with two entirely separate aerobic and anoxic beds were investigated. Overall detachment rate coefficients for biomass, determined on the basis of volatile suspended solids (VSS), glucose and protein as well as for specific microbial groups, i.e., for nitrifiers, denitrifiers, and phosphorous accumulating organisms (PAOs), were established. Biomass detachment rates were found to increase with biomass attachment on carrier media in both beds. The detachment rate coefficients based on VSS were significantly affected by shear stress, whereas for protein, glucose and specific microbial groups, no significant effect of shear stress was observed. High detachment rates were observed for the more porous biofilm structure. The presence of nitrifiers in the anoxic biofilm and denitrifiers in the aerobic biofilm was established by the specific activity measurements. Detachment rates of PAOs in aerobic and anoxic biofilms were evaluated. 相似文献
6.
Continuous protein separations in a magnetically stabilized fluidized bed using nonmagnetic supports
Continuous protein separations were performed using a magnetically stabilized fluidized bed (MSFB) and a commercially available affinity adsorption resin that contained no magnetically susceptible material. These nonmagnetic materials can be stabilized at relatively low fields (<75 G requiring <30 W) if sufficient magnetically susceptible particles are also present in the stabilized bed. The minimum amount of magnetic particles necessary to stabilize the bed is as low as 20% by volume and is a function of various parameters including the size and density of both particles, the magnetic field strength, and the fluidization velocity. Advantages of these beds for performing separations include true continuous, countercurrent liquid-solids contact, mass-transfer efficiencies nearly equal to that of packed beds, and the ability of handle suspended cells or cell debris. A variety of commercially available affinity, ion-exchange, and adsorptive supports can be used in the bed for continuous separations; results are presented for the adsorption and recovery of lysozyme from an aqueous mixture of lysozyme and myoglobin using an affinity resin. 相似文献
7.
8.
Gallegos-Garcia M Celis LB Rangel-Méndez R Razo-Flores E 《Biotechnology and bioengineering》2009,102(1):91-99
This study reports the feasibility of recovering metal precipitates from a synthetic acidic wastewater containing ethanol, Fe, Zn, and Cd at an organic loading rate of 2.5 g COD/L-day and a COD to sulfate ratio of 0.8 in a sulfate reducing down-flow fluidized bed reactor. The metals were added at increasing loading rates: Fe from 104 to 320 mg/L-day, Zn from 20 to 220 mg/L-day, and Cd from 5 to 20 mg/L-day. The maximum COD and sulfate removals attained were 54% and 41%, respectively. The biofilm reactor was operated at pH as low as 5.0 with stable performance, and no adverse effect over COD consumption or sulfide production was observed. The metals precipitation efficiencies obtained for Fe, Zn, and Cd exceeded 99.7%, 99.3%, and 99.4%, respectively. The total recovered precipitate was estimated to be 90% of the theoretical mass expected as metal sulfides. The precipitate was mainly recovered from the bottom of the reactor and the equalizer. The analysis of the precipitates showed the presence of pyrite (FeS2), sphalerite (ZnS) and greenockite (CdS); no metal hydroxides or carbonates in crystalline phases were identified. This study is the first in reporting the feasibility to recover metal sulfides separated from the biomass in a sulfate reducing process in one stage. 相似文献
9.
The feasibility of applying expanded bed adsorption technology to recombinant protein recovery from extracts of transgenic canola (rapeseed) was assessed. The extraction step results in a suspension of high solids content that is difficult to clarify. The coarse portion of the solids can be removed easily, and our aim was to operate the expanded bed in the presence of the recalcitrant particulates. Recombinant beta-glucuronidase (rGUS) produced in transgenic canola seed was the model system. Diethylaminoethyl (DEAE) and Streamline DEAE resin exhibited similar binding and elution properties for both rGUS and native canola proteins. More than 95% of native canola proteins did not bind to DEAE resins at pH 7.5, whereas the bound proteins were fractionated by two-step salt elution into two groups with the first peak, containing 70% of total bound proteins, at 20 mS/cm, followed by elution of rGUS at 50 mS/cm. The adsorption isotherm was only slightly influenced by the presence of up to 14 mg solids/mL extract; C(m) and K(d) changed by -1% and +39%, respectively. Bed expansion was semiquantitatively predictable from physical properties of the fluid together with Stokes's law and the Richardson-Zaki correlation for both clarified and partially clarified extracts. The presence of 1.4% solids did not change rGUS breakthrough behavior of the expanded bed; however, a small difference between expanded bed and packed bed was observed early in the sample loading stage, during which bed expansion adjusts. Canola solids moved through the column in approximately plug flow with no detriment to bed stability. Seventy-two percent recovery of 34-fold purified rGUS was obtained after initial loading of 1.4% (w/w) solids extract to 25% breakthrough. 相似文献
10.
Hollow fiber membranes and chromatographic resin beads are commonly employed in a variety of bioseparation processes. A new class of integrated separation devices is being studied in which the shell side of a hollow fiber device is filled with adsorbents/chromatographic resin beads. Such devices and the corresponding separation methods integrate feed broth clarification by the microfiltration/ultrafiltration membrane with bioproduct purification by the shell-side resin beads either as an adsorbent or as beads in elution chromatography. A mathematical model has been developed for the prediction of the chromatographic behavior of such an integrated device. Simulations have been done to study the effects of axial dispersion, feed flow rate, water permeation rate, fiber packing density, and void fraction. Numerical solutions were obtained by solving the governing equations. This model can reasonably describe the concentration profiles as well as the breakthrough and elution behaviors in the integrated device. 相似文献