首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain and that this process generates superoxide (O(2)(*-)); these effects are blocked by the complex I blocker rotenone. We demonstrated recently that succinate + rotenone-dependent H(2)O(2) production in isolated mitochondria increased mildly on activation of the putative big mitochondrial Ca(2+)-sensitive K(+) channel (mtBK(Ca)) by low concentrations of 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). In the present study we examined effects of NS-1619 on mitochondrial O(2) consumption, membrane potential (DeltaPsi(m)), H(2)O(2) release rates, and redox state in isolated guinea pig heart mitochondria respiring on succinate but without rotenone. NS-1619 (30 microM) increased state 2 and state 4 respiration by 26 +/- 4% and 14 +/- 4%, respectively; this increase was abolished by the BK(Ca) channel blocker paxilline (5 microM). Paxilline alone had no effect on respiration. NS-1619 did not alter DeltaPsi(m) or redox state but decreased H(2)O(2) production by 73% vs. control; this effect was incompletely inhibited by paxilline. We conclude that under substrate conditions that allow reverse electron flow, matrix K(+) influx through mtBK(Ca) channels reduces mitochondrial H(2)O(2) production by accelerating forward electron flow. Our prior study showed that NS-1619 induced an increase in H(2)O(2) production with blocked reverse electron flow. The present results suggest that NS-1619-induced matrix K(+) influx increases forward electron flow despite the high reverse electron flow, and emphasize the importance of substrate conditions on interpretation of effects on mitochondrial bioenergetics.  相似文献   

2.
Cardiac ischemia decreases complex III activity, cytochrome c content, and respiration through cytochrome oxidase in subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The reversible blockade of electron transport with amobarbital during ischemia protects mitochondrial respiration and decreases myocardial injury during reperfusion. These findings support that mitochondrial damage occurs during ischemia and contributes to myocardial injury during reperfusion. The current study addressed whether ischemic damage to the electron transport chain (ETC) increased the net production of reactive oxygen species (ROS) from mitochondria. SSM and IFM were isolated from 6-mo-old Fisher 344 rat hearts following 25 min global ischemia or following 40 min of perfusion alone as controls. H(2)O(2) release from SSM and IFM was measured using the amplex red assay. With glutamate as a complex I substrate, the net production of H(2)O(2) was increased by 178 +/- 14% and 179 +/- 17% in SSM and IFM (n = 9), respectively, following ischemia compared with controls (n = 8). With succinate as substrate in the presence of rotenone, H(2)O(2) increased by 272 +/- 22% and 171 +/- 21% in SSM and IFM, respectively, after ischemia. Inhibitors of electron transport were used to assess maximal ROS production. Inhibition of complex I with rotenone increased H(2)O(2) production by 179 +/- 24% and 155 +/- 14% in SSM and IFM, respectively, following ischemia. Ischemia also increased the antimycin A-stimulated production of H(2)O(2) from complex III. Thus ischemic damage to the ETC increased both the capacity and the net production of H(2)O(2) from complex I and complex III and sets the stage for an increase in ROS production during reperfusion as a mechanism of cardiac injury.  相似文献   

3.
4.
观察鱼藤酮诱导的线粒体轻度损伤细胞氧化应激时硫氧还蛋白转录水平的变化,探讨细胞氧化损伤的可能机制。通过荧光素发光法检测ATP生成、细胞内活性氧(ROS)水平的变化,流式细胞术检测线粒体膜电位,了解低剂量鱼藤酮对线粒体功能的影响;继而用H2O2诱导细胞氧化损伤,MTT法检测细胞活性,观察正常及线粒体缺陷细胞氧化应激时,胞内硫氧还蛋白(Trx)mRNA水平的变化。结果表明,鱼藤酮以剂量依赖方式抑制线粒体ATP的产生、降低线粒体膜电位,而细胞内ROS水平增高;当线粒体损伤细胞氧化应激时胞内Trx mRNA水平降低,提示鱼藤酮诱导线粒体轻度损伤细胞抗氧化能力降低与Trx转录受到抑制有关。  相似文献   

5.
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during the oxidation of complex I substrates (glutamate, pyruvate/malate) occurred from complex I or III. ROS production by mitochondria of Sprague-Dawley rat hearts and corresponding submitochondrial particles was studied. ROS were measured as H2O2 using the amplex red assay. In mitochondria oxidizing complex I substrates, rotenone inhibition did not increase H2O2. Oxidation of complex I or II substrates in the presence of antimycin A markedly increased H2O2. Rotenone prevented antimycin A-induced H2O2 production in mitochondria with complex I substrates but not with complex II substrates. Catalase scavenged H2O2. In contrast to intact mitochondria, blockade of complex I with rotenone markedly increased H2O2 production from submitochondrial particles oxidizing the complex I substrate NADH. ROS are produced from complex I by the NADH dehydrogenase located in the matrix side of the inner membrane and are dissipated in mitochondria by matrix antioxidant defense. However, in submitochondrial particles devoid of antioxidant defense ROS from complex I are available for detection. In mitochondria, complex III is the principal site for ROS generation during the oxidation of complex I substrates, and rotenone protects by limiting electron flow into complex III.  相似文献   

6.
Previous data have demonstrated that, to handle the oxidative stress encountered with training at high intensity, skeletal muscle relies on an increase in mitochondrial biogenesis, a reduced H(2)O(2) production, and an enhancement of antioxidant enzymes. In the present study, we evaluated the influence of voluntary running on mitochondrial O(2) consumption and H(2)O(2) production by intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) isolated from oxidative muscles in conjunction with the determination of antioxidant capacities. When mitochondria are incubated with succinate as substrate, both maximal (state 3) and resting (state 4) O(2) consumption were significantly lower in SSM than in IFM populations. Mitochondrial H(2)O(2) release per unit of O(2) consumed was 2-fold higher in SSM than in IFM. Inhibition of H(2)O(2) formation by rotenone suggests that complex I of the electron transport chain is likely the major physiological H(2)O(2)-generating system. In Lou/C rats (an inbred strain of rats of Wistar origin), neither O(2) consumption nor H(2)O(2) release by IFM and SSM were affected by long-term, voluntary wheel training. In contrast, glutathione peroxidase and catalase activity were significantly increased despite no change in oxidative capacities with long-term, voluntary exercise. Furthermore, chronic exercise enhanced heat shock protein 72 accumulation within skeletal muscle. It is concluded that the antioxidant status of muscle can be significantly improved by prolonged wheel exercise without necessitating an increase in mitochondrial oxidative capacities.  相似文献   

7.
Leptin, secreted by adipose tissue, is involved in the pathogenesis of arterial hypertension, however, the mechanisms through which leptin increases blood pressure are incompletely elucidated. We investigated the effect of leptin, administered for different time periods, on renal Na(+),K(+)-ATPase activity in the rat. Leptin was infused under anesthesia into the abdominal aorta proximally to the renal arteries for 0.5-3 h. Leptin administered at doses of 1 and 10 microg/min per kg for 30 min decreased the Na(+),K(+)-ATPase activity in the renal medulla. This effect disappeared when the hormone was infused for > or =1 h. Leptin infused for 3 h increased the Na(+),K(+)-ATPase activity in the renal cortex and medulla. The stimulatory effect was abolished by a specific inhibitor of Janus kinases (JAKs), tyrphostin AG490, as well as by an NAD(P)H oxidase inhibitor, apocynin. Leptin increased urinary excretion of hydrogen peroxide (H(2)O(2)) between 2 and 3 h of infusion. The effect of leptin on renal Na(+),K(+)-ATPase and urinary H(2)O(2) was augmented by a superoxide dismutase mimetic, tempol, and was abolished by catalase. In addition, infusion of H(2)O(2) for 30 min increased the Na(+),K(+)-ATPase activity. Inhibitors of extracellular signal regulated kinases (ERKs), PD98059 or U0126, prevented Na(+),K(+)-ATPase stimulation by leptin and H(2)O(2). These data indicate that leptin, by acting directly within the kidney, has a delayed stimulatory effect on Na(+),K(+)-ATPase, mediated by JAKs, H(2)O(2) and ERKs. This mechanism may contribute to the abnormal renal Na(+) handling in diseases associated with chronic hyperleptinemia such as diabetes and obesity.  相似文献   

8.
Recent evidence indicates that oxidative stress is central to the pathogenesis of a wide variety of degenerative diseases, aging, and cancer. Oxidative stress occurs when the delicate balance between production and detoxification of reactive oxygen species is disturbed. Mammalian cells respond to this condition in several ways, among which is a change in mitochondrial morphology. In the present study, we have used rotenone, an inhibitor of complex I of the respiratory chain, which is thought to increase mitochondrial O(2)(-)* production, and mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to investigate the relationship between mitochondrial O(2)(-)* production and morphology in human skin fibroblasts. Video-rate confocal microscopy of cells pulse loaded with the mitochondria-specific cation rhodamine 123, followed by automated analysis of mitochondrial morphology, revealed that chronic rotenone treatment (100 nM, 72 h) significantly increased mitochondrial length and branching without changing the number of mitochondria per cell. In addition, this treatment caused a twofold increase in lipid peroxidation as determined with C11-BODIPY(581/591). Finally, digital imaging microscopy of cells loaded with hydroethidine, which is oxidized by O(2)(-)* to yield fluorescent ethidium, revealed that chronic rotenone treatment caused a twofold increase in the rate of O(2)(-)* production. MitoQ (10 nM, 72 h) did not interfere with rotenone-induced ethidium formation but abolished rotenone-induced outgrowth and lipid peroxidation. These findings show that increased mitochondrial O(2)(-)* production as a consequence of, for instance, complex I inhibition leads to mitochondrial outgrowth and that MitoQ acts downstream of this O(2)(-)* to prevent alterations in mitochondrial morphology.  相似文献   

9.
We have determined the underlying sites of H(2)O(2) generation by isolated rat brain mitochondria and how these can shift depending on the presence of respiratory substrates, electron transport chain modulators and exposure to stressors. H(2)O(2) production was determined using the fluorogenic Amplex red and peroxidase system. H(2)O(2) production was higher when succinate was used as a respiratory substrate than with another FAD-dependent substrate, alpha-glycerophosphate, or with the NAD-dependent substrates, glutamate/malate. Depolarization by the uncoupler p-trifluoromethoxyphenylhydrazone decreased H(2)O(2) production stimulated by all respiratory substrates. H(2)O(2) production supported by succinate during reverse transfer of electrons was decreased by inhibitors of complex I (rotenone and diphenyleneiodonium) whereas in glutamate/malate-oxidizing mitochondria diphenyleneiodonium decreased while rotenone increased H(2)O(2) generation. The complex III inhibitors antimycin and myxothiazol decreased succinate-induced H(2)O(2) production but stimulated H(2)O(2) production in glutamate/malate-oxidizing mitochondria. Antimycin and myxothiazol also increased H(2)O(2) production in mitochondria using alpha-glycerophosphate as a respiratory substrate. In substrate/inhibitor experiments maximal stimulation of H(2)O(2) production by complex I was observed with the alpha-glycerophosphate/antimycin combination. In addition, three forms of in vitro mitochondrial stress were studied: Ca(2+) overload, cold storage for more than 24 h and cytochrome c depletion. In each case we observed (i) a decrease in succinate-supported H(2)O(2) production by complex I and an increase in succinate-supported H(2)O(2) production by complex III, (ii) increased glutamate/malate-induced H(2)O(2) generation by complex I and (iii) increased alpha-glycerophosphate-supported H(2)O(2) generation by complex III. Our results suggest that all three forms of mitochondrial stress resulted in similar shifts in the localization of sites of H(2)O(2) generation and that, in both normal and stressed states, the level and location of H(2)O(2) production depend on the predominant energetic substrate.  相似文献   

10.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

11.
We found that reversible inactivation of mitochondrial complex I by S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in isolated rat heart mitochondria resulted in a three-fold increase in H2O2 production, when mitochondria were respiring on pyruvate and malate, (but not when respiring on succinate or in the absence of added respiratory substrate). The inactivation of complex I and the increased H2O2 production were present in mitochondria washed free of SNAP or NO, but were partially reversed by light or dithiothreitol, treatments known to reverse S-nitrosation. Specific inhibition of complex I with rotenone increased H2O2 production to a similar extent as that caused by SNAP. The results suggest that S-nitrosation of complex I can reversibly increase oxidant production by mitochondria, which is potentially important in cell signalling and/or pathology.  相似文献   

12.
Characterization of superoxide-producing sites in isolated brain mitochondria   总被引:17,自引:0,他引:17  
Mitochondrial respiratory chain complexes I and III have been shown to produce superoxide but the exact contribution and localization of individual sites have remained unclear. We approached this question investigating the effects of oxygen, substrates, inhibitors, and of the NAD+/NADH redox couple on H2O2 and superoxide production of isolated mitochondria from rat and human brain. Although rat brain mitochondria in the presence of glutamate+malate alone do generate only small amounts of H2O2 (0.04 +/- 0.02 nmol H2O2/min/mg), a substantial production is observed after the addition of the complex I inhibitor rotenone (0.68 +/- 0.25 nmol H2O2/min/mg) or in the presence of the respiratory substrate succinate alone (0.80 +/- 0.27 nmol H2O2/min/mg). The maximal rate of H2O2 generation by respiratory chain complex III observed in the presence of antimycin A was considerably lower (0.14 +/- 0.07 nmol H2O2/min/mg). Similar observations were made for mitochondria isolated from human parahippocampal gyrus. This is an indication that most of the superoxide radicals are produced at complex I and that high rates of production of reactive oxygen species are features of respiratory chain-inhibited mitochondria and of reversed electron flow, respectively. We determined the redox potential of the superoxide production site at complex I to be equal to -295 mV. This and the sensitivity to inhibitors suggest that the site of superoxide generation at complex I is most likely the flavine mononucleotide moiety. Because short-term incubation of rat brain mitochondria with H2O2 induced increased H2O2 production at this site we propose that reactive oxygen species can activate a self-accelerating vicious cycle causing mitochondrial damage and neuronal cell death.  相似文献   

13.
Ischemic preconditioning, or the protective effect of short ischemic episodes on a longer, potentially injurious, ischemic period, is prevented by antagonists of mitochondrial ATP-sensitive K+ channels (mitoKATP) and involves changes in mitochondrial energy metabolism and reactive oxygen release after ischemia. However, the effects of ischemic preconditioning itself on mitochondria are still poorly understood. We determined the effects of ischemic preconditioning on isolated heart mitochondria and found that two brief (5 min) ischemic episodes are sufficient to induce a small but significant decrease ( approximately 25%) in mitochondrial NADH-supported respiration. Preconditioning also increased mitochondrial H2O2 release, an effect related to respiratory inhibition, because it is not observed in the presence of succinate plus rotenone and can be mimicked by chemically inhibiting complex I in the presence of NADH-linked substrates. In addition, preconditioned mitochondria presented more substantial ATP-sensitive K+ transport, indicative of higher mitoKATP activity. Thus we directly demonstrate that preconditioning leads to mitochondrial respiratory inhibition in the presence of NADH-linked substrates, increased reactive oxygen release, and activation of mitoKATP.  相似文献   

14.
The endogenous production of H2O2 in isolated rat intestinal mitochondria and oxidant induced damage to mitochondria were examined. There was an appreciable amount of H2O2 production in presence of succinate, glutamate and pyruvate, while the presence of rotenone with succinate further increased production. Superoxide generated by the X-XO system induced membrane permeability transition (MPT), calcium influx, lipid peroxidation and changes in membrane fluidity in mitochondria. A decreased mitochondrial ATPase activity and uncoupling of respiration was also observed. Spermine inhibited swelling induced by X-XO and also blocked the calcium influx and reversed the membrane fluidity changes.  相似文献   

15.
To study the role of mitochondrial Ca(2+) clearance in stimulated cells, changes in free Ca(2+) concentration in the cytosol, [Ca(2+)](c) and that in mitochondria, [Ca(2+)](m) along with secretory responses were observed using chromaffin cells co-loaded with Fura-2 and Rhod-2 in the perfused rat adrenal medulla. When the cells were stimulated with 40 mM K(+) in the perfusate, the duration of [Ca(2+)](m) response markedly increased with prolongation of the stimulation period, exhibiting a mean half-decay time of 21 min with 30s stimulation, whereas its amplitude was not altered with stimulations of 10-30s. A computer simulation analysis showed that such a mode of [Ca(2+)](m) response can be produced if excess Ca(2+) taken up by mitochondria precipitates as calcium phosphate (Pi) salt. In the presence of 5 microM rotenone plus 10 microM oligomycin, a decrease in the duration of [Ca(2+)](m) response and a slight but significant increase (24%) in the secretory response to 30s stimulation with 40 mM K(+) were observed. Simulation analyses suggested that this effect of rotenone may be due to reduction in mitochondrial Ca(2+) uptake induced by rotenone-elicited partial depolarization of the mitochondrial membrane potential. In chromaffin cells transsynaptically stimulated through the splanchnic nerve, the intensity of NAD(P)H autofluorescence changed with time courses similar to those of [Ca(2+)](m) responses. The temporal profiles of those two responses were prolonged in a similar manner by application of an inhibitor of mitochondrial Na(+)/Ca(2+) exchanger, CGP37157. Thus, due to the unique Ca(2+) buffering mechanism, [Ca(2+)](m) responses associated with massive mitochondrial Ca(2+) uptake may occur within a limited concentration range in which Ca(2+)-sensitive dehydrogenases are activated to control the mitochondrial redox state in stimulated chromaffin cells.  相似文献   

16.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

17.
Release of H(2)O(2) in response to Ca(2+) loads (1-100 microM) was investigated using Amplex red fluorescent assay in isolated guinea-pig brain mitochondria respiring on glutamate plus malate or succinate. In mitochondria challenged with Ca(2+) (10 microM), in the absence of adenine nucleotides and inhibitors of the respiratory chain, the rate of H(2)O(2) release, taken as an indication of H(2)O(2) production, was decreased by 21.8+/-1.6% in the presence of NADH-linked substrates and by 86.5+/-1.8% with succinate. Parallel with this, a Ca(2+)-induced loss in NAD(P)H fluorescence, sustained depolarization, decrease in fluorescent light scattering signal and in calcein fluorescence were detected indicating an increased permeability and swelling of mitochondria, which were prevented by ADP (2 mM). In the presence of ADP H(2)O(2) release from mitochondria was decreased, but Ca(2+) no longer influenced the generation of H(2)O(2). We suggest that the decreased H(2)O(2) generation induced by Ca(2+) is related to depolarization and NAD(P)H loss resulting from a non-specific permeability increase of the mitochondrial inner membrane.  相似文献   

18.
The hypothesis that mitochondria damaged during complete cerebral ischemia generate increased amounts of superoxide anion radical and hydrogen peroxide (H2O2) upon postischemic reoxygenation has been tested. In rat brain mitochondria, succinate supported H2O2 generation, whereas NADH-linked substrates, malate plus glutamate, did so only in the presence of respiratory chain inhibitors. Succinate-supported H2O2 generation was diminished by rotenone and the uncoupler carbonyl cyanide m-chlorphenylhydrazone and enhanced by antimycin A and increased oxygen tensions. When maximally reduced, the NADH dehydrogenase and the ubiquinone-cytochrome b regions of the electron transport chain are sources of H2O2. These studies suggest that a significant portion of H2O2 generation in brain mitochondria proceeds via the transfer of reducing equivalents from ubiquinone to the NADH dehydrogenase portion of the electron transport chain. Succinate-supported H2O2 generation by mitochondria isolated from rat brain exposed to 15 min of postdecapitative ischemia was 90% lower than that of control preparations. The effect of varying oxygen tensions on H2O2 generation by postischemic mitochondrial preparations was negligible compared with the increased H2O2 generation measured in control preparations. Comparison of the effects of respiratory chain inhibitors and oxygen tension on succinate-supported H2O2 generation suggests that the ability for reversed electron transfer is impaired during ischemia. These data do not support the hypothesis that mitochondrial free radical generation increases during postischemic reoxygenation.  相似文献   

19.
Vascular superoxide anion (O(2)(*-)) levels are increased in DOCA-salt hypertensive rats. We hypothesized that the endothelin (ET)-1-induced generation of ROS in the aorta and resistance arteries of DOCA-salt rats originates partly from xanthine oxidase (XO) and mitochondria. Accordingly, we blocked XO and the mitochondrial oxidative phosphorylation chain to investigate their contribution to ROS production in mesenteric resistance arteries and the aorta from DOCA-salt rats. Systolic blood pressure rose in DOCA-salt rats and was reduced after 3 wk by apocynin [NAD(P)H oxidase inhibitor and/or radical scavenger], allopurinol (XO inhibitor), bosentan (ET(A/B) receptor antagonist), BMS-182874 (BMS; ET(A) receptor antagonist), and hydralazine. Plasma uric acid levels in DOCA-salt rats were similar to control unilaterally nephrectomized (UniNx) rats, reduced with allopurinol and bosentan, and increased with BMS. Levels of thiobarbituric acid-reacting substances were increased in DOCA-salt rats versus UniNx rats, and BMS, bosentan, and hydralazine prevented their increase. Dihydroethidium staining showed reduced O(2)(*-) production in mesenteric arteries and the aorta from BMS- and bosentan-treated DOCA-salt rats compared with untreated DOCA-salt rats. Increased O(2)(*-) derived from XO was reduced or prevented by all treatments in mesenteric arteries, whereas bosentan and BMS had no effect on aortas from DOCA-salt rats. O(2)(*-) generation decreased with in situ treatment by tenoyltrifluoroacetone and CCCP, inhibitors of mitochondrial electron transport complexes II and IV, respectively, whereas rotenone (mitochondrial complex I inhibitor) had no effect. Our findings demonstrate the involvement of ET(A) receptor-modulated O(2)(*-) derived from XO and from mitochondrial oxidative enzymes in arteries from DOCA-salt rats.  相似文献   

20.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号