首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late embryogenesis abundant (LEA) proteins occur in desiccation-tolerant organisms, including the nematode Aphelenchus avenae, and are thought to protect other proteins from aggregation. Surprisingly, expression of the LEA protein AavLEA1 in A. avenae is partially discordant with that of its gene: protein is present in hydrated animals despite low cognate mRNA levels. Moreover, on desiccation, when its gene is upregulated, AavLEA1 is specifically cleaved to discrete, smaller polypeptides. A processing activity was found in protein extracts of dehydrated, but not hydrated, nematodes, and main cleavage sites were mapped to 11-mer repeated motifs in the AavLEA1 sequence. Processed polypeptides retain function as protein anti-aggregants and we hypothesise that the expression pattern and cleavage of LEA protein allow rapid, maximal availability of active molecules to the dehydrating animal.  相似文献   

2.
Late embryogenesis abundant (LEA) proteins are associated with desiccation tolerance in resurrection plants and in plant seeds, and the recent discovery of a dehydration-induced Group 3 LEA-like gene in the nematode Aphelenchus avenae suggests a similar association in anhydrobiotic animals. Despite their importance, little is known about the structure of Group 3 LEA proteins, although computer modeling and secondary structure algorithms predict a largely alpha-helical monomer that forms coiled coil oligomers. We have therefore investigated the structure of the nematode protein, AavLEA1, in the first such analysis of a well characterized Group 3 LEA-like protein. Immunoblotting and subunit cross-linking experiments demonstrate limited oligomerization of AavLEA1, but analytical ultracentrifugation and gel filtration show that the vast majority of the protein is monomeric. Moreover, CD, fluorescence emission, and Fourier transform-infrared spectroscopy indicate an unstructured conformation for the nematode protein. Therefore, in solution, no evidence was found to support structure predictions; instead, AavLEA1 seems to be natively unfolded with a high degree of hydration and low compactness. Such proteins can, however, be induced to fold into more rigid structures by partner molecules or by altered physiological conditions. Because AavLEA1 is associated with desiccation stress, its Fourier transform-infrared spectrum in the dehydrated state was examined. A dramatic but reversible increase in alpha-helix and, possibly, coiled coil formation was observed on drying, indicating that computer predictions of secondary structure may be correct for the solid state. This unusual finding offers the possibility that structural shifts in Group 3 LEA proteins occur on dehydration, perhaps consistent with their role in anhydrobiosis.  相似文献   

3.
Mutational inactivation of the genes designated DR1172 and DRB0118 in Deinococcus radiodurans R1 greatly sensitizes this species to desiccation, but not to ionizing radiation. These genes encode proteins that share features with the desiccation-induced LEA76 proteins of many plants and the PCC13-62 protein of Craterostigma plantagineum, suggesting that D. radiodurans may serve as a useful model for the study of desiccation tolerance in higher organisms.  相似文献   

4.
The consistent correlation between desiccation tolerance in orthodox seed tissue and an accumulation of certain "late embryogenesis abundant" (LEA) proteins suggests that these proteins reduce desiccation-induced cellular damage. The aim of the present work was to test this hypothesis. Exogenous abscisic acid (ABA) was used to elevate the level of heal-soluble LEA-like proteins in axes from immature (30 days after flowering: mid-development) seeds of soybean ( Glycine max [L.] Merrill cv. Chippewa 64). As the LEA-like proteins accumulated in response to ABA, the leakage of all elements after desiccation and subsequent rehydration markedly declined. Both LEA-like protein accumulation and the decline in desiccation-induced electrolyte leakage were apparently dependent on the presence of ABA. Both effects of ABA were inhibited by cycloheximide. Light microscopy revealed a marked effect of the ABA on cellular integrity following desiccation. Osmotic stress also caused a decrease in desiccation-induced electrolyte leakage and stimulated the accumulation of LEA-like proteins. Our data are consistent with the hypothesis that the LEA-like proteins contribute to the increase in desiccation tolerance in response to ABA, and are consistent with a general protective role for these proteins in desiccation tolerance.  相似文献   

5.
Anhydrobiotic organisms accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered proteins (IDPs) reported to improve cellular tolerance to water stress. Here we show that AfrLEA6, a Group 6 LEA protein only recently discovered in animals, protects lactate dehydrogenase (LDH), citrate synthase (CS) and phosphofructokinase (PFK) against damage during desiccation. In some cases, protection is enhanced by trehalose, a naturally-occurring protective solute. An open question is whether gain of secondary structure by LEA proteins during drying is a prerequisite for this stabilizing function. We used incremental drying (equilibration to a series of relative humidities, RH) to test the ability of AfrLEA2, a Group 3 LEA protein, to protect desiccation-sensitive PFK. AfrLEA2 was chosen due to its exceptional ability to protect PFK. In parallel, circular dichroism (CD) spectra were obtained for AfrLEA2 across the identical range of relative water contents. Protection of PFK by AfrLEA2, above that observed with trehalose and BSA, coincides with simultaneous gain of α-helix in AfrLEA2. At 100% RH, the CD spectrum for AfrLEA2 is typical of random coil, while at decreasing RH, the spectrum shows higher ellipticity at 191 nm and minima at 208 and 220 nm, diagnostic of α-helix. This study provides experimental evidence linking the gain of α-helix with stabilization of a target protein across a graded series of hydration states. Mechanistically, it is intriguing that certain other functions of these IDPs, like preventing aggregation of target proteins, can occur in fully hydrated cells and apparently do not require gain of α-helix.  相似文献   

6.
Group 3 late embryogenesis abundant (G3LEA) proteins have amino acid sequences with characteristic 11-mer motifs and are known to reduce aggregation of proteins during dehydration. Previously, we clarified the structural and thermodynamic properties of the 11-mer repeating units in G3LEA proteins using synthetic peptides composed of two or four tandem repeats originating from an insect (Polypedilum vanderplanki), nematodes and plants. The purpose of the present study is to test the utility of such 22-mer peptides as protective reagents for aggregation-prone proteins. For lysozyme, desiccation-induced aggregation was abrogated by low molar ratios of a 22-mer peptide, PvLEA-22, derived from a P. vanderplanki G3LEA protein sequence. However, an unexpected behavior was noted for the milk protein, α-casein. On drying, the resultant aggregation was significantly suppressed in the presence of PvLEA-22 with its molar ratios>25 relative to α-casein. However, when the molar ratio was <10, aggregation occurred on addition of PvLEA-22 to aqueous solutions of α-casein. Other peptides derived from nematode, plant and randomized G3LEA protein sequences gave similar results. Such an anomalous solubility change in α-casein was shown to be due to a pH shift to ca. 4, a value nearly equal to the isoelectric point (pI) of α-casein, when any of the 22-mer peptides was mixed. These results demonstrate that synthetic peptides derived from G3LEA protein sequences can reduce protein aggregation caused both by desiccation and, at high molar ratios, also by pH effects, and therefore have potential as stabilization reagents.  相似文献   

7.
Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5 M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation–rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a “molecular shield”. Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins.  相似文献   

8.
The evolutionarily conserved stress-inducible HSP70 molecular chaperone plays a central role in maintaining protein quality control in response to various forms of stress. Constitutively elevated HSP70 expression is a characteristic of many tumor cells and contributes to their survival. We recently identified the small-molecule 2-phenylethyenesulfonamide (PES) as a novel HSP70 inhibitor. Here, we present evidence that PES-mediated inhibition of HSP70 family proteins in tumor cells results in an impairment of the two major protein degradation systems, namely, the autophagy-lysosome system and the proteasome pathway. HSP70 family proteins work closely with the HSP90 molecular chaperone to maintain the stability and activities of their many client proteins, and PES causes a disruption in the HSP70/HSP90 chaperone system. As a consequence, many cellular proteins, including known HSP70/HSP90 substrates, accumulate in detergent-insoluble cell fractions, indicative of aggregation and functional inactivation. Overall, PES simultaneously disrupts several cancer critical survival pathways, supporting the idea of targeting HSP70 as a potential approach for cancer therapeutics.  相似文献   

9.
Aβ (amyloid β-peptide) has a central role in AD (Alzheimer's disease) where neuronal toxicity is linked to its extracellular and intracellular accumulation as oligomeric species. Searching for molecules that attenuate Aβ aggregation could uncover novel therapies for AD, but most studies in mammalian cells have inferred aggregation indirectly by assessing levels of secreted Aβ peptide. In the present study we establish a mammalian cell system for the direct visualization of Aβ formation by expression of an Aβ(42)-EGFP (enhanced green fluorescent protein) fusion protein in the human embryonic kidney cell line T-REx293, and use this to identify both macromolecules and small molecules that reduce aggregation and associated cell toxicity. Thus a molecular shield protein AavLEA1 [Aphelenchus avenae LEA (late embryogenesis abundant) protein 1], which limits aggregation of proteins with expanded poly(Q) repeats, is also effective against Aβ(42)-EGFP when co-expressed in T-REx293 cells. A screen of polysaccharide and small organic molecules from medicinal plants and fungi reveals one candidate in each category, PS5 (polysaccharide 5) and ganoderic acid DM respectively, with activity against Aβ. Both PS5 and ganoderic acid DM probably promote Aβ aggregate clearance indirectly through the proteasome. The model is therefore of value to study the effects of intracellular Aβ on cell physiology and to identify reagents that counteract those effects.  相似文献   

10.
Vos MJ  Hageman J  Carra S  Kampinga HH 《Biochemistry》2008,47(27):7001-7011
Heat shock proteins (HSPs) were originally identified as stress-responsive proteins required to deal with proteotoxic stresses. Besides being stress-protective and possible targets for delaying progression of protein folding diseases, mutations in chaperones also have been shown to cause disease (chaperonopathies). The mechanism of action of the "classical", stress-inducible HSPs in serving as molecular chaperones preventing the irreversible aggregation of stress-unfolded or disease-related misfolded proteins is beginning to emerge. However, the human genome encodes several members for each of the various HSP families that are not stress-related but contain conserved domains. Here, we have reviewed the existing literature on the various members of the human HSPB (HSP27), HSPH (HSP110), HSPA (HSP70), and DNAJ (HSP40) families. Apart from structural and functional homologies, several diversities between members and families can be found that not only point to differences in client specificity but also seem to serve differential client handling and processing. How substrate specificity and client processing is determined is far from being understood.  相似文献   

11.
We investigated whether a model peptide for group 3 LEA (G3LEA) proteins we developed in previous studies can protect liposomes from desiccation damage. Four different peptides were compared: 1) PvLEA-22, which consists of two tandem repeats of the 11-mer motif characteristic of LEA proteins from the African sleeping chironomid; 2) a peptide with amino acid composition identical to that of PvLEA-22, but with its sequence scrambled; 3) poly-l-glutamic acid; and 4) poly-l-lysine. Peptides 1) and 2) protected liposomes composed of 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) against fusion caused by desiccation, as revealed by particle size distribution measurements with dynamic light scattering. Indeed, liposomes maintain their pre-stress size distribution when these peptides are added at a peptide/POPC molar ratio of more than 0.5. Interestingly, peptide 1) achieved the comparable or higher retention of a fluorescent probe inside liposomes than did several native LEA proteins published previously. In contrast, the other peptides exhibited less protective effects. These results demonstrate that the synthetic peptide derived from the G3LEA protein sequence can suppress desiccation-induced liposome fusion. Fourier transform infrared (FT-IR) spectroscopic measurements were performed for the dried mixture of each peptide and liposome. Based on results for the gel-to-liquid crystalline phase transition temperature of the liposome and the secondary structure of the peptide backbone, we discuss possible underlying mechanisms for the protection effect of the synthetic peptide on dried liposomes.  相似文献   

12.
Late embryogenesis‐abundant (LEA) proteins are one of the components involved in desiccation tolerance (DT) by maintaining cellular structures in the dry state. Among them, MtPM25, a member of the group 5 is specifically associated with DT in Medicago truncatula seeds. Its function is unknown and its classification as a LEA protein remains elusive. Here, evidence is provided that MtPM25 is a hydrophobic, intrinsically disordered protein that shares the characteristics of canonical LEA proteins. Screening protective activities by testing various substrates against freezing, heating and drying indicates that MtPM25 is unable to protect membranes but able to prevent aggregation of proteins during stress. Prevention of aggregation was also found for the water soluble proteome of desiccation‐sensitive radicles. This inhibition was significantly higher than that of MtEM6, one of the most hydrophilic LEA protein associated with DT. Moreover, when added after the stress treatment, MtPM25 is able to rapidly dissolve aggregates in a non‐specific manner. Sorption isotherms show that when it is unstructured, MtPM25 absorbs up to threefold more water than MtEM6. MtPM25 is likely to act as a protective molecule during drying and plays an additional role as a repair mechanism compared with other LEA proteins.  相似文献   

13.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

14.
The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.  相似文献   

15.
Humidity has a large impact on the distribution and abundance of terrestrial invertebrates, but the molecular mechanisms governing drought resistance are not fully understood. Some attention has been given to the role of the heat shock response as a component of desiccation tolerance, but recent focus has been on the chaperone-like LEA (late embryogenesis abundant) proteins in anhydrobiotic animals. This study investigates the expression of putative LEA proteins as well as the heat shock protein Hsp70 during drought stress in soil and surface dwelling species of Collembola (springtails). In silico analysis of four EST candidates from two species of Collembola showed the presence of a Group 3 LEA protein in Megaphorura arctica. In common with other Group 3 LEA proteins, the new sequence is predicted to be 100% natively unfolded, with a strong degree of lysine and alanine periodicity and with a negative average hydrophobicity of −1.273. The sequence clusters with members of the Group 3 LEA in plants. Furthermore, cross-species Western blotting showed drought-induced expression of putative LEA proteins in six species of Collembola. In the surface dwelling species, Orchesella cincta, degree of dehydration and length of exposure correlated with level of putative LEA protein. Hsp70 was also found to increase in individuals of O. cincta and Folsomia candida that had been exposed to drought conditions for 6 days. These results show the presence of a LEA protein-coding region in Collembola, but also indicate that several proteins are involved in response to dehydration stress, including Hsp70.  相似文献   

16.
Cornette R  Kikawada T 《IUBMB life》2011,63(6):419-429
An African chironomid, Polypedilum vanderplanki, is the only insect known to be capable of extreme desiccation tolerance, or anhydrobiosis. In the 1950s and 1960s, Hinton strenuously studied anhydrobiosis in this insect from a physiological standpoint; however, nobody has afterward investigated the phenomenon. In 2000, research on mechanisms underlying anhydrobiosis was resumed due to successful establishment of a rearing system for P. vanderplanki. This review is focused on the latest findings on the physiological and molecular mechanisms underlying the induction of anhydrobiosis in P. vanderplanki. Early experiments demonstrated that the induction of anhydrobiosis was possible in isolated tissues and independent from the control of central nervous system. However, to achieve successful anhydrobiosis, larvae need a slow regime of desiccation, allowing them to synthesize molecules, which will protect cells and tissues against the deleterious effects of dehydration. Trehalose, a nonreducing disaccharide, which accumulates in P. vanderplanki larvae up to 20% of the dry body mass, is thought to replace the water in its tissues. Similarly, highly hydrophilic proteins called the late embryogenesis abundant (LEA) proteins are expressed in huge quantities and act as a molecular shield to protect biological molecules against aggregation and denaturation. This function is shared by heat shock proteins, which are also upregulated during the desiccation process. At the same time, desiccating larvae express various antioxidant molecules and enzymes, to cope with the massive oxidative stress, which is responsible for general damage to membranes, proteins, and DNA in dehydrating cells. Finally, specific water channels, called aquaporins, accelerate dehydration, and trehalose together with LEA proteins forms a glassy matrix, which protects the biological molecules and the structural integrity of larvae in the anhydrobiotic state.  相似文献   

17.
18.
Small heat-shock proteins (sHSPs) are a ubiquitous family of low molecular mass (15-30 kDa) stress proteins that have been found in all organisms. Under stress, sHSPs such as alpha-crystallin can act as chaperones binding partially denatured proteins and preventing further denaturation and aggregation. Recently, it has been proposed that the function of sHSPs is to stabilize stress-denatured protein and then act cooperatively with other HSPs to renature the partially denatured protein in an ATP-dependent manner. However, the process by which this occurs is obscure. As no significant phosphorylation of alpha-crystallin was observed during the renaturation, the role of ATP is not clear. It is now shown that ATP at normal physiological concentrations causes sHSPs to change their confirmation and release denatured protein, allowing other molecular chaperones such as HSP70 to renature the protein and renew its biological activity. In the absence of ATP, sHSPs such as alpha-crystallin are more efficient than HSP70 in preventing stress-induced protein aggregation. This work also indicates that in mammalian systems at normal cellular ATP concentrations, sHSPs are not effective chaperones.  相似文献   

19.
LEA (late embryogenesis abundant) proteins are intrinsically disordered proteins that contribute to stress tolerance in plants and invertebrates. Here we show that, when both plant and animal LEA proteins are co-expressed in mammalian cells with self-aggregating polyglutamine (polyQ) proteins, they reduce aggregation in a time-dependent fashion, showing more protection at early time points. A similar effect was also observed in vitro, where recombinant LEA proteins were able to slow the rate of polyQ aggregation, but not abolish it altogether. Thus, LEA proteins act as kinetic stabilisers of aggregating proteins, a novel function in protein homeostasis consistent with a proposed role as molecular shields.  相似文献   

20.
HSP70 family members are highly conserved proteins that function as molecular chaperones. Their principle role is to aid protein folding and promote the correct cellular localisations of their respective substrates. The function of HSP70 isoforms can be exhibited independently or with the HSP90 chaperone system in which HSP70 is important for substrate recruitment. In addition to their chaperone role, HSP70 isoforms promote cell survival by inhibiting apoptosis at multiple points within both the intrinsic and extrinsic cell death pathways. Consistent with this cytoprotective function, increased expression of HSP70 isoforms is commonly associated with the malignant phenotype. We recently reported that dual silencing of the major constitutive (HSC70) and inducible (HSP72) isoforms of HSP70 in cancer cells could phenocopy the effects of a pharmacologic HSP90 inhibitor to induce proteasome-dependent degradation of HSP90 client proteins CRAF, CDK4 and ERBB2. This was accompanied by a G1 cell cycle arrest and extensive apoptosis which was not seen in non-tumorigenic human cell lines. Here we discuss the possible implications of our research for the development of HSP70 family modulators which offer not only the possibility of inhibiting HSP70 activity but also the simultaneous inhibition of HSP90, resulting in extensive tumour-specific apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号