首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Murine intrahepatic lymphocytes (IHL) are dominated by invariant TCR alpha-chain expressing CD1d-reactive NKT cells, which can cause model hepatitis. Invariant NKT (CD56(+/-)CD161(+)) and recently identified noninvariant CD1d-reactive T cells rapidly produce large amounts of IL-4 and/or IFN-gamma and can regulate Th1/Th2 responses. Human liver contains large numbers of CD56(+) NKT cells but few invariant NKT. Compared with matched peripheral blood T cell lines, primary IHL lines from patients with chronic hepatitis C had high levels of CD161 and CD1d reactivity, but the invariant TCR was rare. CD1d-reactive IHL were strikingly Th1 biased. IHL also demonstrated CD1d-specific cytotoxic activity. Hepatocytes and other liver cells express CD1d. These results identify a novel population of human T cells that could contribute to destructive as well as protective immune responses in the liver. CD1d-reactive T cells may have distinct roles in different tissues.  相似文献   

2.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

3.
CD1d-restricted natural killer T (NKT) cells expressing invariant Vα14Jα18 T cell receptor α-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver (∼0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-γ (IFN-γ) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-γ in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.  相似文献   

4.
The hepatoprotective effect of IL-6 on various forms of liver injury including T cell-mediated hepatitis has been well documented, and it is believed that induction of antiapoptotic proteins is an important mechanism. In this study, we provide evidence suggesting an additional mechanism involved in the protective role of IL-6 in T cell-mediated hepatitis. In NKT cell-depleted mice, Con A-induced liver injury is diminished; this can be restored by the adoptive transfer of liver mononuclear cells or NKT cells from wild-type mice, but not from IL-6-treated mice. In vitro IL-6 treatment inhibits the ability of mononuclear cells to restore Con A-induced liver injury in NKT-depleted mice, whereas the same treatment does not inhibit purified NKT cells from restoring the injury. The addition of CD3(+) T cells or CD4(+) T cells can restore the inhibitory effect of IL-6 on purified NKT cells, whereas the addition of CD3(+) T cells from CD4-deficient mice fails to restore this inhibitory effect. The expression of IL-6R was detected in 52.6% of hepatic CD3(+) T cells and 32.7% of hepatic CD4(+) T cells, but only in 3.9% of hepatic NK and 1.5% of hepatic NKT cells. Finally, treatment with IL-6 induces STAT3 activation in hepatic lymphocytes and hepatic T cells, and blocking such activation abolishes the inhibitory effect of IL-6 on hepatic lymphocytes to restore liver injury. Taken together, these findings suggest that in addition to its antiapoptotic abilities, as previously well documented, IL-6/STAT3 inhibits NKT cells via targeting CD4(+) T cells and consequently prevents T cell-mediated hepatitis.  相似文献   

5.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

6.
Upon entering the liver CD8 T cells encounter large numbers of NKT cells patrolling the hepatocyte (HC) surface facing the perisinusoidal space. We asked whether hepatic NKT cells modulate the priming of CD8 T cells by HC. Hepatic (alpha-galactosyl-ceramide-loaded CD1d dimer binding) NKT cells produce predominantly IL-4 when stimulated with glycolipid-presenting HC but predominantly IFN-gamma when stimulated with glycolipid-presenting dendritic cells. These NKT cells prime naive CD8 T cells to a (K(b)-presented) peptide ligand if they simultaneously recognize a CD1d-binding glycolipid presented to them on the surface of the responding CD8 T cells that they prime. No IL-10-producing CD8 T cells are detected if these T cells are primed by either HC or NKT cells. In contrast, IL-10 is produced by HC-primed CD8 T cells if IFN-beta-producing NKT cells are coactivated by the same HC presenting a glycolipid (in the context of CD1d) and an antigenic peptide (in the context of K(b)). Hence, IL-10-producing CD8 T cells are generated in a type I IFN-dependent manner if the three cell types (CD8 T cells, NKT cells, and ligand-presenting HC) specifically and closely interact. IL-10-producing CD8 T cells generated under these conditions down-modulate IL-2 (and proliferative) responses of naive CD4 or CD8 T cells primed by DC. If in close proximity, NKT cells can thus locally modulate the phenotype of CD8 T cells during their priming by HC thereby limiting the local activation of proinflammatory immune effector cells and protecting the liver against immune injury.  相似文献   

7.
To address the role of CD1d in mucosal immune regulation in bacterial infection, we infected CD1d KO mice with Listeria monocytogenes (Lm). A higher systemic bacterial burden associated with inflammatory lymphocytic infiltrations within the intestine was found in CD1d KO compared with wild type (WT) mice. Lm induced strong IFN-gamma mRNA expression in the liver of WT and the intestine of CD1d KO mice, thus demonstrating the dual, opposing immune activities of IFN-gamma in Lm infection that is dependent on CD1d and/or NKT cells. Analysis of hepatic T cell population demonstrated a reduction of NK1.1(+)TCRbeta+ cells in both mice, followed by recovery only in WT mice. Last, the proportion of alpha4beta1 integrin on lung lymphocytes from CD1d KO was dramatically increased compared with WT mice. Thus, the absence of CD1d resulted in increased susceptibility towards Listeria infection, induced changes in NKT cells, and increased trafficking of alpha4beta1 molecule to inflamed lung.  相似文献   

8.
Diffuse large B-cell lymphoma is the commonest histological type of malignant lymphoma, and remains incurable in many cases. Developing more efficient immunotherapy strategies will require better understanding of the disorders of immune responses in cancer patients. NKT (natural killer-like T) cells were originally described as a unique population of T cells with the co-expression of NK cell markers. Apart from their role in protecting against microbial pathogens and controlling autoimmune diseases, NKT cells have been recently revealed as one of the key players in the immune responses against tumors. The objective of this study was to evaluate the frequency of CD3(+)/CD16(+)CD56(+) cells in the peripheral blood of 28 diffuse large B-cell lymphoma (DLBCL) patients in correlation with clinical and laboratory parameters. Median percentages of CD3(+)/CD16(+)CD56(+) were significantly lower in patients with DLBCL compared to healthy donors (7.37% vs. 9.01%, p = 0.01; 4.60% vs. 5.81%, p = 0.03), although there were no differences in absolute counts. The frequency and the absolute numbers of CD3(+)/CD16(+)CD56(+) cells were lower in advanced clinical stages than in earlier ones. The median percentage of CD3(+)/CD16(+)CD56(+) cells in patients in Ann Arbor stages 1-2 was 5.55% vs. 3.15% in stages 3-4 (p = 0.02), with median absolute counts respectively 0.26 G/L vs. 0.41 G/L (p = = 0.02). The percentage and absolute numbers of CD3(+)/CD16(+)CD56(+) cells were significantly higher in DL -BCL patients without B-symptoms compared to the patients with B-symptoms, (5.51% vs. 2.46%, p = 0.04; 0.21 G/L vs. 0.44 G/L, p = 0.04). The percentage of CD3(+)/CD16(+)CD56(+) cells correlated adversely with serum lactate dehydrogenase (R= -445; p 〈 0.05) which might influence NKT count. These figures suggest a relationship between higher tumor burden and more aggressive disease and decreased NKT numbers. But it remains to be explained whether low NKT cell counts in the peripheral blood of patients with DLBCL are the result of their suppression by the tumor cells, or their migration to affected lymph nodes or organs.  相似文献   

9.
Murine bone marrow (BM) NK T cells can suppress graft-vs-host disease, transplant rejection, and MLRs. Human BM contains T cells with similar potential. Human BM was enriched for NK T cells, approximately 50% of which recognized the nonpolymorphic CD1d molecule. In contrast to the well-characterized blood-derived CD1d-reactive invariant NK T cells, the majority of human BM CD1d-reactive T cells used diverse TCR. Healthy donor invariant NK T cells rapidly produce large amounts of IL-4 and IFN-gamma and can influence Th1/Th2 decision-making. Healthy donor BM CD1d-reactive T cells were Th2-biased and suppressed MLR and, unlike the former, responded preferentially to CD1d(+) lymphoid cells. These results identify a novel population of human T cells which may contribute to B cell development and/or maintain Th2 bias against autoimmune T cell responses against new B cell Ag receptors. Distinct CD1d-reactive T cell populations have the potential to suppress graft-vs-host disease and stimulate antitumor responses.  相似文献   

10.
The human liver contains significant numbers of T cells, NK cells, and lymphocytes that coexpress T and NK cell receptors. To evaluate their functional activities, we have compared the cytotoxic activities and cytokines produced by normal adult hepatic CD3+CD56- (T) cells, CD3-CD56+ (NK) cells, and CD3+CD56+ (natural T (NT)) cells. In cytotoxicity assays using immunomagnetic bead-purified NK cell, T cell, and NT cell subpopulations as effectors, fresh hepatic NK cells lysed K562 targets, while NT cells could be induced to do so by culturing with IL-2. Both NT and T cells were capable of redirected cytolysis of P815 cells using Abs to CD3. Flow cytometric analysis of cytokine production by fresh hepatic lymphocyte subsets activated by CD3 cross-linking or PMA and ionomycin stimulation indicated that NT cells and T cells could produce IFN-gamma, TNF-alpha, IL-2, and/or IL-4, but little or no IL-5, while NK cells produced IFN-gamma and/or TNF-alpha only. The majority of NT cells produced inflammatory (Th1) cytokines only; however, approximately 6% of all hepatic T cells, which included 5% of Valpha24 TCR-bearing NT cells and 2% of gammadeltaTCR+ cells, simultaneously produced IFN-gamma and IL-4. The existence of such large numbers of cytotoxic lymphocytes with multiple effector functions suggests that the liver is an important site of innate immune responses, early regulation of adaptive immunity, and possibly peripheral deletion of autologous cells.  相似文献   

11.
Chronic hepatitis B virus (HBV) infection is characterized by sustained liver inflammation with an influx of lymphocytes, which contributes to the development of cirrhosis and hepatocellular carcinoma. The mechanisms underlying this immune-mediated hepatic pathogenesis remain ill defined. We report in this article that repetitive infusion of anti-CD137 agonist mAb in HBV-transgenic mice closely mimics this process by sequentially inducing hepatitis, fibrosis, cirrhosis, and, ultimately, liver cancer. CD137 mAb initially triggers hepatic inflammatory infiltration due to activation of nonspecific CD8(+) T cells with memory phenotype. CD8(+) T cell-derived IFN-γ plays a central role in the progression of chronic liver diseases by actively recruiting hepatic macrophages to produce fibrosis-promoting cytokines and chemokines, including TNF-α, IL-6, and MCP-1. Importantly, the natural ligand of CD137 was upregulated significantly in circulating CD14(+) monocytes in patients with chronic hepatitis B infection and closely correlated with development of liver cirrhosis. Thus, sustained CD137 stimulation may be a contributing factor for liver immunopathology in chronic HBV infection. Our studies reveal a common molecular pathway that is used to defend against viral infection but also causes chronic hepatic diseases.  相似文献   

12.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

13.
Despite recent gains in knowledge regarding CD1d-restricted NKT cells, very little is understood of non-CD1d-restricted NKT cells such as CD8(+)NK1.1(+) T cells, in part because of the very small proportion of these cells in the periphery. In this study we took advantage of the high number of CD8(+)NK1.1(+) T cells in IL-15-transgenic mice to characterize this T cell population. In the IL-15-transgenic mice, the absolute number of CD1d-tetramer(+) NKT cells did not increase, although IL-15 has been shown to play a critical role in the development and expansion of these cells. The CD8(+)NK1.1(+) T cells in the IL-15-transgenic mice did not react with CD1d-tetramer. Approximately 50% of CD8(+)NK1.1(+) T cells were CD8alphaalpha. In contrast to CD4(+)NK1.1(+) T cells, which were mostly CD1d-restricted NKT cells and of which approximately 70% were CD69(+)CD44(+), approximately 70% of CD8(+)NK1.1(+) T cells were CD69(-)CD44(+). We could also expand similar CD8alphaalphaNK1.1(+) T cells but not CD4(+) NKT cells from CD8alpha(+)beta(-) bone marrow cells cultured ex vivo with IL-15. These results indicate that the increased CD8alphaalphaNK1.1(+) T cells are not activated conventional CD8(+) T cells and do not arise from conventional CD8alphabeta precursors. CD8alphaalphaNK1.1(+) T cells produced very large amounts of IFN-gamma and degranulated upon TCR activation. These results suggest that high levels of IL-15 induce expansion or differentiation of a novel NK1.1(+) T cell subset, CD8alphaalphaNK1.1(+) T cells, and that IL-15-transgenic mice may be a useful resource for studying the functional relevance of CD8(+)NK1.1(+) T cells.  相似文献   

14.
The liver has specific mechanisms to protect itself from infectious agents and to avoid autoimmunity, indicating an important role of the hepatic tissues in antigen presentation and tolerance induction. Since intrahepatic lymphocytes may contribute to the innate immunity and to the liver pathology, it is of interest to analyze the expression of antigen presenting molecules and of the related T cell recognition in liver, and how these change in relation to different diseases. We analyzed the expression of MHC class I, and of CD1-a, -b, -c, and -d proteins on liver tissues from patients with different hepatic diseases. Moreover, in the same patients we studied the intrahepatic and peripheral NKT cell recognition of alpha-galactosyl ceramide antigen in the context of CD1d. Unlike in other tissues, classical MHC class I molecules were poorly expressed in the hepatic compartment, suggesting that inflamed hepatocytes may trigger weak MHC-restricted T cell responses. Nevertheless, we observed a prevalent expression of HLA class I-like CD1d isoform on the hepatocyte surface, indicating that CD1d is the main restriction element in the liver. In patients with viral hepatitis, the intrahepatic CD1d expression parallels the recruitment of CD56+Valpha24Vbeta11+ NKT cells in the liver which recognize CD1d presenting glycolipids such as alpha-galactosyl ceramide, suggesting that the intrahepatic T cell immunity may focus on glycolipid antigens.  相似文献   

15.
Natural killer T (NKT) cells are a unique T-cell population that is positively selected by CD1d-expressing cells. In this study, we examined the kinetics of conventional CD4+TCRbeta+ and CD4-TCRbeta+ cells along with various NKT cell populations from WT and CD1d KO mice after oral Listeria monocytogenes (Lm) infection at different time points in tissue compartments. We found that CD4+TCRbeta+ cells expressing NK1.1+ (NKT) were constitutively expressed in the lung of both strains of mice, but disappeared after infection. In contrast, CD4-TCRbeta+ NK1.1+ cells migrated to the spleen. Here, we demonstrated that endogenous IL-12 was predominantly expressed in the spleen of CD1d KO mice 2 days after infection, whereas IL-4 was predominantly expressed in the liver of WT mice. Higher levels of IFN-gamma were expressed in MLN of CD1d KO but not in WT mice on day 5. Thus, tissue-specific ligands orchestrate the localization and activation of NKT cells to control immune response to Listeria, which may explain the difference in disease susceptibility.  相似文献   

16.
Human liver is enriched with CD8(+)T- and CD3(+)CD56(+) natural T (NT)-lymphocytes, important anti-tumour effectors, similar to murine NKTs. IL-12 promotes anti-tumour functions of NKTs. We quantified IL-12 and CD56(+)/CD8(+)T lymphocytes in normal and tumour bearing liver. We also examined the effect of IL-12 on the expansion/activation of peripheral blood cells in vitro. IL-12 was detected in normal (n=13, median 2032 pg/100 mg protein) and increased in tumour bearing liver (n=9, 3678 pg, p< 0.01). Infiltrating monocytes appear to be the principal producers. Culture with IL-12 selectively expanded CD8(+)T and CD3(+)CD56(+)NT cells and polarised their cytokine responses to Th1-type. However, there was no in vivo expansion of these cells in tumour bearing liver. Changes observed in culture required addition of IL-2. We therefore quantified IL-2 in hepatic tissue. IL-2 was detected in normal liver (median 4700 pg/100 mg protein). Surprisingly, there was no increase in tumour-infiltrated liver (4910 pg). The presence of IL-12 may create an environment in healthy liver that promotes the accumulation of CD8(+)T and CD56(+)NT cells. Therefore, the development of metastases in the presence of high levels of IL-12 may be due to an insufficient IL-12 response. Alternatively, lack of IL-2 rather than a defect in IL-12, may be responsible for insufficient expansion/activation of tumour specific cytotoxic T lymphocytes.  相似文献   

17.
A role for regulatory lymphocytes has been demonstrated in the pathogenesis of type 1 diabetes in the NOD mouse but the nature of these cells is debated. CD1d-restricted NKT lymphocytes have been implicated in this process. Previous reports of reduced diabetes incidence in NOD mice in which the numbers of NKT cells are artificially increased have been attributed to the enhanced production of IL-4 by these cells and a role for classical NKT cells, using the Valpha14-Jalpha18 rearrangement. We now show that overexpression in NOD mice of CD1d-restricted TCR Valpha3.2(+)Vbeta9(+) NKT cells producing high levels of IFN-gamma but low amounts of IL-4 leads to prevention of type 1 diabetes, demonstrating a role for nonclassical CD1d-restricted NKT cells in the regulation of autoimmune diabetes.  相似文献   

18.
Invariant (inv)NKT cells are a subset of autoreactive lymphocytes that recognize endogenous lipid ligands presented by CD1d, and are suspected to regulate the host response to cell stress and tissue damage via the prompt production of cytokines. We investigated invNKT cell response during the progression of chronic viral hepatitis caused by hepatitis B or C virus infection, a major human disease characterized by a diffused hepatic necroinflammation with scarring fibrotic reaction, which can progress toward cirrhosis and cancer. Ex vivo frequency and cytokine production were determined in circulating and intrahepatic invNKT cells from controls (healthy subjects or patients with nonviral benign or malignant focal liver damage and minimal inflammatory response) or chronic viral hepatitis patients without cirrhosis, with cirrhosis, or with cirrhosis and hepatocellular carcinoma. invNKT cells increase in chronically infected livers and undergo a substantial modification in their effector functions, consisting in the production of the type 2 profibrotic IL-4 and IL-13 cytokines, which characterizes the progression of hepatic fibrosis to cirrhosis. CD1d, nearly undetectable in noncirrhotic and control livers, is strongly expressed by APCs in cirrhotic ones. Furthermore, in vitro CD1d-dependent activation of invNKT cells from healthy donors elicits IL-4 and IL-13. Together, these findings show that invNKT cells respond to the progressive liver damage caused by chronic hepatitis virus infection, and suggest that these cells, possibly triggered by the recognition of CD1d associated with viral- or stress-induced lipid ligands, contribute to the pathogenesis of cirrhosis by expressing a set of cytokines involved in the progression of fibrosis.  相似文献   

19.
Diseases that affect the intestine may have hepatic manifestations, but the mechanisms involved in establishing hepatic disease secondarily remain poorly understood. We previously reported that IL-10 knockout (KO) mice developed severe necrotizing hepatitis following oral infection with Trichinella spiralis. In this study, we used this model of intestinal inflammation to further examine the role of IL-10 in regulating hepatic injury. Hepatic damage was induced by migrating newborn larvae. By delivering the parasite directly into the portal vein, we demonstrated that an ongoing intestinal immune response was necessary for the development of hepatitis. Intestinally derived CD4+ cells increased in the livers of IL-10 KO mice, and Ab-mediated blockade of MAdCAM-1 inhibited the accumulation of CD4+alpha(4)beta(7)+ cells in the liver. Moreover, adoptive transfer of intestinally primed CD4+ T cells from IL-10 KO mice caused hepatitis in infected immunodeficient animals. Conversely, transfer of wild-type donor cells reduced the severity of hepatic inflammation in IL-10 KO recipients, demonstrating regulatory activity. Our results revealed that IL-10 prevented migration of intestinal T cells to the liver and inhibited the development of hepatitis.  相似文献   

20.
BALB/c mice that tolerate the allogeneic grafts develop allogeneic-specific anterior chamber-associated immune deviation. Because CD1d-reactive NKT cells are essential for anterior chamber-associated immune deviation, we postulated that the survival of C57BL/6 (B6) cornea graft in BALB/c mice was also dependent on CD1d-reactive NKT cells. The B6 corneal graft rejection rate in BALB/c vs Jalpha281 knockout (KO) mice, which lack NKT cells, was measured. While there were no difference in the early phase of rejection, the survival rates at 12 wk after grafting for BALB/c and Jalpha281 KO mice were 50 and 0%, respectively. Because anti-CD1d mAb abrogated the corneal graft survival in the wild-type mice we concluded that CD1d-reactive NKT cells were essential for graft survival. Moreover, allospecific T regulatory (Tr) cells correlated with acceptance of B6 grafts in BALB/c mice, and the adoptive transfer of these allospecific Tr cells to Jalpha281 KO mice allowed a 50% survival rate of B6 cornea grafts. In conclusion, CD1d-reactive NKT cells are required for induction of allospecific Tr cells and are essential for survival of corneal allografts. Mechanisms that contribute to cornea graft acceptance may lead to new therapies for improvement in graft survival in high-risk corneas and other transplanted tissues and grafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号