首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The deposition and cycling of carbon and nitrogen in carbonate sediments located between coral reefs on the northern and central sections of the Great Barrier Reef were examined. Rates of mass sediment accumulation ranged from 1.9 kg m−2 year−1 (inshore reefs) to 2.1–4.9 kg m−2 year−1 (between mid-shelf reefs); sedimentation was minimal off outer-shelf reefs. Rates of total organic carbon decomposition ranged from 1.7 to 11.4 mol C m−2 year−1 and total nitrogen mineralization ranged from 77 to 438 mmol N m−2 year−1, declining significantly with distance from land. Sediment organic matter was highly reactive, with mineralization efficiencies ranging from 81 to 99% for organic carbon and 64–100% for nitrogen, with little C and N burial. There was no evidence of carbonate dissolution/precipitation in short-term incubation experiments. Rates of sulfate reduction (range 0–3.4 mmol S m−2 day−1) and methane release (range 0–12.8 μmol CH4 m−2 day−1) were minor or modest pathways of carbon decomposition. Aerobic respiration, estimated by difference between total O2 consumption and the sum of the other pathways, accounted for 55–98% of total carbon mineralization. Rates of ammonification ranged from 150 to 1,725 μmol NH4 m−2 day−1, sufficient to support high rates of denitrification (range 30–2,235 μmol N2 m−2 day−1). N2O release was not detected and rates of NH4 + and NO2 + NO3 efflux were low, indicating that most mineralized N was denitrified. The percentage of total N input removed via denitrification averaged ≈75% (range 28–100%) with little regenerated N available for primary producers. Inter-reef environments are therefore significant sites of energy and nutrient flow, especially in spatially complex reef matrices such as the Great Barrier Reef.  相似文献   

3.
The aim of the present work was to estimate the contribution of different point and diffuse sources to the regional N2O emission strength of steppe in the Xilin river catchment, Inner Mongolia, People’s Republic of China. Transect studies showed that the topographic effect on N2O emissions from upland soils was negligible and that upland steppe is only a very weak net source of N2O during the growing season (0.8 ± 0.4 μg N2O–N m−2 h−1). Slightly higher emissions were found for riparian areas (1.8 ± 0.3 μg N2O–N m−2 h−1), which cover ∼4% of the landscape. Even faeces or urine additions stimulated N2O emissions from steppe soils only weakly (<2.5 μg N2O–N m−2 h−1 for a 5 days period). Due to low moisture contents, N2O emissions from dung heaps were also rather low (6.2 ± 0.8 μg N2O–N kg−1 dry matter h−1). In contrast, three orders of magnitude higher N2O emissions were found at sheepfolds (2.45 mg N2O–N m−2 h−1 on average). By calculating N2O emissions on a landscape scale, we show that point sources, and especially sheepfolds, become the dominating regional N2O source during the growing season if stocking rates are >1 sheep ha−1. Our results indicate that the common grazing management in the Xilin river region leads to a translocation of nitrogen from large source areas towards defined spots. This finding is further supported by measurements of NH3 concentrations at different sites. Since most of the nitrogen accumulated in these hot spots is finally lost through burning of the dried excrements by the farmers for heating and cooking purposes, the ecosystem faces a significant human perturbation of regional N cycling, which may contribute to an accelerated degradation of steppe in the Xilin river region. Responsible Editor: Per Ambus.  相似文献   

4.
The main focus of this study was to evaluate the effects of soil moisture and temperature on temporal variation of N2O, CO2 and CH4 soil-atmosphere exchange at a primary seasonal tropical rainforest (PF) site in Southwest China and to compare these fluxes with fluxes from a secondary forest (SF) and a rubber plantation (RP) site. Agroforestry systems, such as rubber plantations, are increasingly replacing primary and secondary forest systems in tropical Southwest China and thus effect the N2O emission in these regions on a landscape level. The mean N2O emission at site PF was 6.0 ± 0.1 SE μg N m−2 h−1. Fluxes of N2O increased from <5 μg N m−2 h−1 during dry season conditions to up to 24.5 μg N m−2 h−1 with re-wetting of the soil by the onset of first rainfall events. Comparable fluxes of N2O were measured in the SF and RP sites, where mean N2O emissions were 7.3 ± 0.7 SE μg N m−2 h−1 and 4.1 ± 0.5 SE μg N m−2 h−1, respectively. The dependency of N2O fluxes on soil moisture levels was demonstrated in a watering experiment, however, artificial rainfall only influenced the timing of N2O emission peaks, not the total amount of N2O emitted. For all sites, significant positive correlations existed between N2O emissions and both soil moisture and soil temperature. Mean CH4 uptake rates were highest at the PF site (−29.5 ± 0.3 SE μg C m−2 h−1), slightly lower at the SF site (−25.6 ± 1.3 SE μg C m−2 h−1) and lowest for the RP site (−5.7 ± 0.5 SE μg C m−2 h−1). At all sites, CH4 uptake rates were negatively correlated with soil moisture, which was also reflected in the lower uptake rates measured in the watering experiment. In contrast to N2O emissions, CH4 uptake did not significantly correlate with soil temperature at the SF and RP sites, and only weakly correlated at the PF site. Over the 2 month measurement period, CO2 emissions at the PF site increased significantly from 50 mg C m−2 h−1 up to 100 mg C m−2 h−1 (mean value 68.8 ± 0.8 SE mg C m−2 h−1), whereas CO2 emissions at the SF and RP site where quite stable and varied only slightly around mean values of 38.0 ± 1.8 SE mg C m−2 h−1 (SF) and 34.9 ± 1.1 SE mg C m−2 h−1 (RP). A dependency of soil CO2 emissions on changes in soil water content could be demonstrated for all sites, thus, the watering experiment revealed significantly higher CO2 emissions as compared to control chambers. Correlation of CO2 emissions with soil temperature was significant at the PF site, but weak at the SF and not evident at the RP site. Even though we demonstrated that N and C trace gas fluxes significantly varied on subdaily and daily scales, weekly measurements would be sufficient if only the sink/ source strength of non-managed tropical forest sites needs to be identified.  相似文献   

5.
Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble. Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.  相似文献   

6.
The influence of brackish phytoplankton cell classes upon the response of urea decomposition was investigated in Lake Nakaumi. The urea decomposition rate was 5 to 350 μmol urea m−3 h−1 in the light and 3 to 137 μmol urea m−3 h−1 in the dark. The urea decomposition rates in the light were obviously higher than in the dark. An extremely high rate (350 μmol urea m−3 h−1) was observed in Yonago Bay. The rate in the smaller fraction (<5 μm) exceeded that in the middle (5–25 μm) and larger fractions (>25 μm). The chlorophyll- and photosynthesis-specific rates for urea decomposition in the light were 0.5 to 3.9 μmol urea mg chl.a −1 h−1 and 0.3 to 1.3 μmol urea mg photo.C−1. The specific urea decomposing activities were higher in the smaller fraction than in the other two fractions. The present results suggest that in brackish waters urea decomposition occurred with coupling to the standing crop and photosynthetic activity of phytoplankton. Received: May 22, 1999 / Accepted: August 15, 1999  相似文献   

7.
We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.  相似文献   

8.
We surveyed macrophyte community structure and measured community metabolism and nutrient uptake along a temperature gradient (9.7–17.4°C) in four Icelandic streams influenced by geothermal heating. The study streams are part of the geothermal area in Hengill that is uniquely characterised by streams with comparable water chemistry despite the geothermal influence. Stream metabolism was studied applying the diurnal upstream–downstream dissolved oxygen change technique. Nutrient uptake was studied by adding solutions of nitrogen and phosphorus together with a conservative tracer. Rates of primary production (GPP) and uptake of nitrate–N and phosphate-P increased with increasing stream temperature. GPP was 20 times higher (up to 12.99 g O2 m−2 day−1) and rates of nutrient uptake were up to 30-times higher (up to 22.99, 13.31 and 7.94 mg m−2 h−1 for ammonium, nitrate and phosphate, respectively) in the warmest streams compared with the coldest. Furthermore, macrophytes, when present, were strongly controlling ecosystem processes. Our study implies that temperature may affect stream ecosystem processes both directly (i.e. physiologically) and indirectly (i.e. by changing other structural parameters).  相似文献   

9.
During an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced a peak in the top-most muddy sediment (380 μM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 μM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 μM to 100 μM for ammonium and from 0.05 μM to 16 μM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, in both muddy (104 nmol cm−2 d−1––NH4+; 8 nmol cm−2 d−1––HPO4−2) and sandy sediments (26 nmol cm−2 d−1––NH4+; 1 nmol cm−2 d−1––HPO4−2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year−1––NH4+; 2 ton year−1––HPO4−2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.  相似文献   

10.
To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2–3 times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15 cm in Exp. 1 and 0, 5 and 10 cm in Exp. 2, respectively) were used. Liquid urea–ammonium nitrate (UAN, 224 kg N ha−1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2 μg N m−2 h−1, 60.5 to 92.4 μg N m−2 h−1, −0.8 to 0.5 μg C m−2 h−1, and 42.1 to 81.7 mg C m−2 h−1 in both experiments, respectively. Deep N placement (10 and 15 cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5 cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5 cm, for instance, averaged N2O emissions from N placement at 10 cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10 cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils.  相似文献   

11.
Efficient nitrification and denitrification of wastewater containing 1,700 mgl−1 of ammonium-nitrogen was achieved using aerobic granular sludge cultivated at medium-to-high organic loading rates. The cultivated granules were tested in a sequencing batch reactor (SBR) fed with 6.4 or 10.2 kg NH4+-N m−3 day−1, a loading significantly higher than that reported in literature. With alternating 2 h oxic and 2 h anoxic operation (OA) modes, removal rate was 45.5 mg NH4+-N g−1 volatile suspended solids−1 h−1 at 6.4 kg NH4+-N m−3 day−1 loading and 41.3 ± 2.0 at 10.2 kg NH4+-N m−3 day−1 loading. Following the 60 days SBR test, granules were intact. The fluorescence in situ hybridization and confocal laser scanning microscopy results indicate that the SBR-OA granules have a distribution with nitrifers outside and heterotrophs outside that can effectively expose functional strains to surrounding substrates at high concentrations with minimal mass transfer limit. This microbial alignment combined with the smooth granule surface achieved nitrification–denitrification of wastewaters containing high-strength ammonium using aerobic granules. Conversely, the SBR continuous aeration mode yielded a distribution with nitrifers outside and heterotrophs inside with an unsatisfactory denitrification rate and floating granules as gas likely accumulated deep in the granules.  相似文献   

12.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

13.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

14.
Photosynthetic and respiratory activities at low light intensities (300 μE m−2 s−1) in the microbial mats of the Ebro Delta were measured by the oxygen exchange method in the laboratory. The response to H2S concentration, a significant factor in the dynamics of that ecosystem, was assessed. Total photosynthesis reached 23.78–28.17 μg O2 cm−2 h−1. Photosynthetic activity was not significantly different at the two temperatures tested. Respiratory activity reached a consumption of 6.95–8.56 μg O2 cm−2 h−1 at 25°C and 11.42–11.70 μg O2 cm−2 h−1 at 35°C. The Q10 value for respiration was 1.37–1.64. Oxygen production in Microcoleus chthonoplastes, the most abundant cyanobacterium in those microbial mats, was highly resistant to sulfide inhibition. Concentrations less than 0.02 mM sulfide did not affect the rate of photosynthesis. Concentrations up to 0.1 mM sulfide caused different degrees of partially reversible inhibition, with a maximum of 67% at 0.78 mM sulfide. Primary production (g C assimilated/m2/year) in those microbial mats was also assessed and compared with data from other ecosystems. Received: 24 October 1997 / Accepted: 18 December 1997  相似文献   

15.
The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.  相似文献   

16.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

17.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

18.
This study presents the tidal exchange of ammonium, nitrite + nitrate, phosphate and silicate between two salt marshes and adjacent estuarine waters. Marsh nutrient fluxes were evaluated for Pointe-au-Père and Pointe-aux-épinettes salt marshes, both located along the south shore of the lower St. Lawrence Estuary in Rimouski area (QC, Canada). Using nutrients field data, high precision bathymetric records and a hydrodynamic numerical model (MIKE21-NHD) forced with predicted tides, nutrients fluxes were estimated through salt marsh outlet cross-sections at four different periods of the year 2004 (March, May, July and November). Calculated marsh nutrient fluxes are discussed in relation with stream inputs, biotic and abiotic marsh processes and the incidence of sea ice cover. In both marshes, the results show the occurrence of year-round and seaward NH4 + fluxes and landward NO2  + NO3 fluxes (ranging from 9.06 to 30.48 mg N day−1 m−2 and from −32.07 to −9.59 mg N day−1 m−2, respectively) as well as variable PO4 3− and Si(OH)4 fluxes (ranging from −3.73 to 6.34 mg P day−1 m−2 and from −29.19 to 21.91 mg Si day−1 m−2, respectively). These results suggest that NO2  + NO3 input to marshes can be a significant source of NH4 + through dissimilatory nitrate reduction to ammonium (DNRA). This NH4 +, accumulating in marsh sediment rather than being removed through coupled nitrification–denitrification or biological assimilation, is exported toward estuarine waters. From average P and Si tidal fluxes analysis, both salt marshes act as a sink during high productivity period (May and July) and as a source, supplying estuarine water during low productivity period (November and March).  相似文献   

19.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

20.
Under optimal nutrient conditions, both Microcystis sp. and Anabaena sp. isolated from Lake Biwa grew optimally at 28–32°C but differed in maximal growth rates, phosphate uptake kinetics, maximal phosphorus quotas, and growth responses to nitrogen and phosphorus limitation. The maximal growth rates of Microcystis and Anabaena were 1.6 and 1.25 divisions day−1, respectively. With phosphate and nitrate in the growth-limiting range, the growth of Microcystis was optimal at an N : P ratio of 100 : 1 (by weight) and declined at lower (nitrogen limitation) and higher (phosphorus limitation) ratios. In contrast, Anabaena growth rates did not change at N : P ratios from 1000 : 1 to 10 : 1. Starting with cells containing the maximal phosphorus quota, Microcystis growth in minus-phosphorus medium ceased in 7–9 days, compared with 12–13 days for Anabaena. The phosphate turnover time in cultures starved to their minimum cell quotas was 7.9 min for Microcystis and 0.6 min for Anabaena. Microcystis had a higher K s (0.12 μg P l−1 10−6 cells) and lower V max (9.63 μg P l−1 h−1 10−6 cells), than Anabaena (K s 0.02 μg P l−1 h−1 10−6 cells; V max 46.25 63 μg P l−1 h−1 10−6 cells), suggesting that Microcystis would not be able to grow well in phosphorus-limited waters. We conclude that in spite of the higher growth rate under ideal conditions, Microcystis does not usually bloom in the North Basin because of low availability of phosphorus and nitrogen. Although Anabaena has an efficient phosphorus-uptake system, its main strategy for growth in low-phosphorus environments may depend on storage of phosphorus during periods of abundant phosphorus supply, which are rare in the North Basin. Received: July 31, 2000 / Accepted: October 18, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号