首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although mesenchymal stromal cells (MSCs) have been applied clinically to treat cardiac diseases, it is unclear how and to which extent transplanted MSCs exert their beneficial effects. To address these questions, pre-clinical MSC administrations are needed for which pigs appear to be the species of choice. This requires the use of porcine cells to prevent immune rejection. However, it is currently unknown to what extent porcine MSCs (pMSCs) resemble human MSCs (hMSCs). Aim of this study was to compare MSC from porcine bone marrow (BM) with human cells for phenotype, multi-lineage differentiation potential, immune-modulatory capacity and the effect on cardiac function after transplantation in a mouse model of myocardial infarction. Flow cytometric analysis revealed that pMSC expressed surface antigens also found on hMSC, including CD90, MSCA-1 (TNAP/W8B2 antigen), CD44, CD29 and SLA class I. Clonogenic outgrowth was significantly enriched following selection of CD271+ cells from BM of human and pig (129 ± 29 and 1961 ± 485 fold, respectively). hMSC and pMSC differentiated comparably into the adipogenic, osteogenic or chondrogenic lineages, although pMSC formed fat much faster than hMSC. Immuno-modulation, an important feature of hMSC, was clearly demonstrated for pMSC when co-cultured with porcine peripheral blood cells stimulated with PMA and pIL-2. Finally, pMSC transplantation after myocardial infarction attenuated adverse remodelling to a similar extent as hMSC when compared to control saline injection. These findings demonstrate that pMSCs have comparable characteristics and functionality with hMSCs, making reliable extrapolation of pre-clinical pMSC studies into a clinical setting very well possible.  相似文献   

2.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

3.
Several lines of evidence suggest that the immune activation after myocardial infarction (MI) induces secondary myocardial injury. Although dendritic cells (DC) are potent regulators of immunity, their role in MI is still undetermined. We investigated the effect of DC modulation by CSF on left ventricular (LV) remodeling after MI. MI was induced by ligation of the left coronary artery in male Wistar rats. G-CSF (20 microg/kg/day, MI-G, n = 33), a GM-CSF inducer (romurtide, 200 microg/kg/day, MI-GM, n = 28), or saline (MI-C, n = 55) was administered for 7 days. On day 14, MI-G animals had higher LV max dP/dt and smaller LV dimensions, whereas MI-GM animals had lower LV max dP/dt and larger LV dimensions than did MI-C animals, despite similar infarct size. In MI-C, OX62(+) DC infiltrated the infarcted and border areas, peaking on day 7. Bromodeoxyuridine-positive DC were observed in the border area during convalescence. Infiltration by DC was decreased in MI-G animals and increased in MI-GM animals compared with MI-C (p < 0.05). In the infarcted area, the heat shock protein 70, TLR2 and TLR4, and IFN-gamma expression were reduced in MI-G, but increased in MI-GM in comparison with those in MI-C animals. IL-10 expression was higher in MI-G and lower in MI-GM than in MI-C animals. In conclusion, G-CSF improves and GM-CSF exacerbates early postinfarction LV remodeling in association with modulation of DC infiltration. Suppression of DC-mediated immunity could be a new strategy for the treatment of LV remodeling after MI.  相似文献   

4.
BACKGROUND: Human mesenchymal stem cells (hMSC) have been isolated and characterized extensively for a variety of clinical applications. Yet it is unclear how the phenomenon of hMSC plasticity can be safely and reasonably exploited for therapeutic use. METHODS: We have generated mesenchymal stem cells (MSC) from normal human BM and identified a novel cell population with a transformed phenotype. This cell population was characterized by morphologic, immunophenotypic, cytogenetic analyzes and telomerase expression. Its tumorigenicity in NOD/SCID mice was also studied. RESULTS: A subpopulation of cells in hMSC culture was noted to appear morphologically distinct from typical MSC. The cells were spherical, cuboidal to short spindle in shape, adherent and exhibited contact independent growth. Phenotypically the cells were CD133(+), CD34(-), CD45(-), CD90(low), CD105(-), VEGFR2(+). Cytogenetic analysis showed chromosome aneuploidy and translocations. These cells also showed a high level of telemerase activity compared with typical MSC. Upon transplantation into NOD/SCID mice, multiple macroscopic solid tumors formed in multiple organs or tissues. Histologically, these tumors were very poorly differentiated and showed aggressive growth with large areas of necrosis. DISCUSSION: The possible explanations for the origin of this cell population are: (1) the cells represent a transformed population of MSC that developed in culture; (2) abnormal cells existed in the donor BM at rare frequency and subsequently expanded in culture. In either case, the MSC culture may provide a suitable environment for transformed cells to expand or propagate in vitro. In summary, our data demonstrate the potential of transformed cells in hMSC culture and highlight the need for karyotyping as a release criteria for clinical use of MSC.  相似文献   

5.
Human mesenchymal stem cells (hMSC) have proven beneficial in the repair and preservation of infarcted myocardium. Unfortunately, MSCs represent a small portion of the bone marrow and require ex vivo expansion. To further advance the clinical usefulness of cellular cardiomyoplasty, derivation of "MSC-like" cells that can be made available "off-the-shelf" are desirable. Recently, human embryonic stem cell-derived mesenchymal cells (hESC-MC) were described. We investigated the efficacy of hESC-MC for cardiac repair after myocardial infarction (MI) compared to hMSC. Because of increased efficacy of cell delivery, cells were embedded into collagen patches and delivered to infarcted myocardium. Culture of hMSC and hESC-MCs in collagen patches did not induce differentiation or significant loss in viability. Transplantation of hMSC and hES-MC patches onto infarcted myocardium of athymic nude rats prevented adverse changes in infarct wall thickness and fractional area change compared to a non-viable patch control. Hemodynamic assessment showed that hMSCs and hES-MC patch application improved end diastolic pressure equivalently. There were no changes in systolic function. hES-MC and hMSC construct application enhanced neovessel formation compared to a non-viable control, and each cell type had similar efficacy in stimulating endothelial cell growth in vitro. In summary, the use of hES-MC provides similar efficacy for cellular cardiomyoplasty as compared to hMSC and may be considered a suitable alternative for cell therapy.  相似文献   

6.
We have previously shown that targeting human CD34(+) hematopoietic stem cells (HSC) with a bispecific antibody (BiAb) directed against myosin light chain (MLC) increases delivery of cells to the injured hearts and improves cardiac performance in the nude rat. In this study, we have sought to validate our previous observations and to perform more detailed determination of ventricular function in immunocompetent mice with myocardial infarction (MI) that were treated with armed CD34(+) HSC. We examined whether armed CD34(+) HSC would target the injured heart following MI and restore ventricular function in vitro. MI was created by ligation of the left anterior descending artery. After 48 h, adult ICR mice received either 0.5 x 10(6) human CD34(+) HSC armed with anti-CD45 x anti-MLC BiAb or an equal volume of medium through a single tail vein injection. Two weeks after stem cell administration, ventricular function of hearts from mice receiving armed CD34(+) HSC was significantly greater compared with the same parameters from control mice. Immunohistochemistry confirmed the accumulation of CD34(+) HSC in MI hearts infused with stem cells. Angiogenesis was significantly enhanced in CD34(+) HSC-treated heart as determined by vascular density per area. Furthermore, histopathological examination revealed that the retained cardiac function observed in CD34(+) HSC-treated mice was associated with decreased ventricular fibrosis. These results suggest that peripheral administration of armed CD34(+) HSC results in localization of CD34(+) HSC to injured myocardium and restores myocardial function.  相似文献   

7.
Ventricular remodeling following myocardial infarction (MI) is a major cause of heart failure, a condition prevalent in older individuals. Following MI, immune cells are mobilized to the myocardium from peripheral lymphoid organs and play an active role in orchestrating repair. While the effect of aging on mouse bone marrow (BM) has been studied, less is known about how aging affects human BM cells and their ability to regulate repair processes. In this study, we investigate the effect aging has on human BM cell responses post‐MI using a humanized chimeric mouse model. BM samples were collected from middle aged (mean age 56.4 ± 0.97) and old (mean age 72.7 ± 0.59) patients undergoing cardiac surgery, CD34+/− cells were isolated, and NOD‐scid‐IL2rγnull (NSG) mice were reconstituted. Three months following reconstitution, the animals were examined at baseline or subjected to coronary artery ligation (MI). Younger patient cells exhibited greater repopulation capacity in the BM, blood, and spleen as well as greater lymphoid cell production. Following MI, CD34+ cell age impacted donor and host cellular responses. Mice reconstituted with younger CD34+ cells exhibited greater human CD45+ recruitment to the heart compared to mice reconstituted with old cells. Increased cellular responses were primarily driven by T‐cell recruitment, and these changes corresponded with greater human IFNy levels and reduced mouse IL‐1β in the heart. Age‐dependent changes in BM function led to significantly lower survival, increased infarct expansion, impaired host cell responses, and reduced function by 4w post‐MI. In contrast, younger CD34+ cells helped to limit remodeling and preserve function post‐MI.  相似文献   

8.
Recently, a key role in memory T cell homing and survival has been attributed to the bone marrow (BM) in mice. In the human BM, the repertoire, function, and survival niches of CD4(+) and CD8(+) T cells have not yet been elucidated. In this study, we demonstrate that CD4(+) and CD8(+) effector memory T cells accumulate in the human BM and are in a heightened activation state as revealed by CD69 expression. BM-resident memory T cells produce more IFN-γ and are frequently polyfunctional. Immunofluorescence analysis revealed that CD4(+) and CD8(+) T cells are in the immediate vicinity of IL-15-producing BM cells, suggesting a close interaction between these two cell types and a regulatory role of IL-15 on T cells. Accordingly, IL-15 induced an identical pattern of CD69 expression in peripheral blood CD4(+) and CD8(+) T cell subsets. Moreover, the IL-15-inducible molecules Bcl-x(L), MIP-1α, MIP-1β, and CCR5 were upregulated in the human BM. In summary, our results indicate that the human BM microenvironment, in particular IL-15-producing cells, is important for the maintenance of a polyfunctional memory CD4(+) and CD8(+) T cell pool.  相似文献   

9.
Bone marrow‐derived mesenchymal stem cells (BM‐MSCs ) transplantation has been reported to be a promising therapy for myocardial infarction (MI). However, low survival rate of BM‐MSCs in infarcted heart is one of the major limitations for the perspective clinical application. In this study, we aimed to investigate the effect of hepatocyte growth factor (HGF) on left ventricular function improvement of HGF gene‐modified BM‐MSCs (HGF‐MSCs) after its delivery into the infarcted rat hearts. BM‐MSCs were isolated with fibroblast‐like morphology and expressed CD44+CD29+CD90+/CD34‐CD45‐CD31‐CD11a. After 5‐azacytidine induction in vitro, 20%–30% of the cells were positively stained for desmin, cardiac‐specific cardiac troponin I and connexin‐43. Histological staining revealed that 2 weeks after MI is an optimal time point with decreased neutrophil infiltration and increased vascular number. Minimal infarct size and best haemodynamic analysis were also observed after cell injection at 2 weeks compared with that of 1 h, 1 week or 4 weeks. Echocardiogram confirmed that transplantation with HGF‐MSCs significantly improved left ventricular function compared with other groups in rat MI models. MSCs and HGF‐MSCslabelled with DAPI were detected 4 weeks after MI in the infarcted area. Decreased infarcted scar area and increased angiogenesis formation could be found in HGF‐MSCs group than in other groups as demonstrated by hematoxylin and eosin (H&E) staining and factor VIII staining. These results indicate that HGF‐MSCs transplantation could enhance the contractile function and attenuate left ventricular remodelling efficiently in rats with MI. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The study investigated the effects of traditional Chinese drug Qiliqiangxin on cardiac function and the expression of pro/anti-inflammatory cytokines TNF-α/IL-10 in rats with myocardial infarction (MI). Rats with MI were randomly divided into drug-treated group (MI-Q) and control group (MI-C) compared with sham-operated group (S). Rats in the MI-Q group were treated with crude drug of oral Qiliqiangxin 24 h after operation at the dosage of 4 g/kg/day for 4 weeks, while in MI-C group and S group were treated with normal saline at the same time. Echocardiography and hemodynamic parameters, histopathologic changes and the expression of myocardial cytokines including TNF-α and IL-10 were assessed 4 weeks after the drug therapy. The results indicated that rats of the MI-C group exhibited decreased cardiac function and increased ratio of TNF-α/IL-10 which principally secreted by myocardium compared with those of the S group and Qiliqiangxin treatment significantly improved cardiac function and histopathologic changes with down-regulated ratio of TNF-α/IL-10. These data suggests that Qiliqiangxin may improve cardiac function of rats with MI through regulation the balance between TNF-α and IL-10.  相似文献   

11.
BACKGROUND: ALDH(br) cells express high aldehyde dehydrogenase (ALDH) activity and have progenitor cell activity in several contexts. We characterized human BM ALDH(br) cells to determine whether cell sorting based on ALDH activity isolates potentially useful populations for cell therapy. METHOD: We measured the expression of ALDH and cell-surface Ag by flow cytometry and compared the ability of sorted ALDH(br), and BM populations remaining after ALDH(br) cells were removed (ALDH(dim) populations), to develop into several cell lineages in culture. RESULTS: The ALDH(br) population comprised 1.2+/-0.8% (mean+/-SD, n=30) nucleated cells and was enriched in cells expressing CD34, CD117, CD105, CD127, CD133 and CD166, and in primitive CD34(+) CD38(-) and CD34(+) CD133(+) progenitors. Most of the CD34(+) and CD133(+) cells were ALDH(dim). ALDH(br) populations had 144-fold more hematopoietic colony-forming activity than ALDH(dim) cells and included all megakaryocyte progenitors. ALDH(br) populations readily established endothelial cell monolayers in cultures. Cells generating endothelial colonies in 7 days were 435-fold more frequent in ALDH(br) than ALDH(dim) populations. CFU-F were 9.5-fold more frequent in ALDH(br) than ALDH(dim) cells, and ALDH(br) cells gave rise to multipotential mesenchymal cell cultures that could be driven to develop into adipocytes, osteoblasts and chondrocytes. DISCUSSION: Hematopoietic, endothelial and mesenchymal progenitor cells can be isolated simultaneously from human BM by cell sorting based on ALDH activity. BM ALDH(br) populations may be useful in several cell therapy applications.  相似文献   

12.
We examined the effects of IL-9 on human mast cell development from CD34(+) cord blood (CB) and peripheral blood cells in serum-deprived cultures. IL-9 apparently enhanced cell production under stimulation with stem cell factor (SCF) from CD34(+) CB cells. A great majority of the cultured cells grown with SCF + IL-9 became positive for tryptase at 4 wk. In methylcellulose cultures of CD34(+) CB cells, IL-9 increased both the number and size of mast cell colonies grown with SCF. Furthermore, SCF + IL-9 caused an exclusive expansion of mast cell colony-forming cells in a 2-wk liquid culture of CD34(+) CB cells, at a level markedly greater than for SCF alone. Clonal cell cultures and RT-PCR analysis showed that the targets of SCF + IL-9 were the CD34(+)CD38(+) CB cells rather than the CD34(+)CD38(-) CB cells. IL-9 neither augmented the SCF-dependent generation of progeny nor supported the survival of 6-wk-cultured mast cells. Moreover, there was no difference in the appearance of tryptase(+) cells and histamine content in the cultured cells between SCF and SCF + IL-9. The addition of IL-9 increased numbers of mast cell colonies grown with SCF from CD34(+) peripheral blood cells in children with or without asthma. It is of interest that mast cell progenitors of asthmatic patients responded to SCF + IL-9 to a greater extent than those of normal controls. Taken together, IL-9 appears to act as a potent enhancer for the SCF-dependent growth of mast cell progenitors in humans, particularly asthmatic patients.  相似文献   

13.
To investigate the function of the main adhesion receptors (CD62L, CD49d, CD49e, CD11b and CD18) on CD34+ cells during homing, their expression was quantified by flow cytometry using calibration beads. CD34+ cells were isolated from bone-marrow (BM), cord blood (CB) or peripheral blood (PB) from patients with myeloma. As this process might mimic the mature leukocyte migration, we also observed the effect of exposing endothelial cells to shear stress (7 dyn/cm(2)) on the adhesion of CB CD34+ cells.The proportion of CD34+/CD62L+ cells was greater in PB than in BM (p<0.05). Likewise, we found a significantly greater expression of CD62L receptor on PB cells compared to BM cells (p<0.05) and on BM cells compared to CB cells (p<0.05). The proportions of CD34+/CD49d+ cells and CD34+/CD49e+ cells were significantly higher in the BM and CB than in PB. However, no significant difference in CD49d or CD49e antigen densities was observed. The beta_2 integrins (CD11b and CD18) receptors are also implicated in CD34+ cells homing to BM. No significant variation in CD34+/CD11b+ and CD34+/CD18+ cells frequency was noted. However quantitative analysis revealed that CD18 was more strongly expressed on BM cells than on PB and CB cells.The adhesion assay showed that fluid flow may favour a firm adhesion of CB CD34+ cells to endothelial cells whereas static conditions just allowed CD34+ cells sedimentation.In conclusion, quantitative expression of the main receptors on CD34+ cells indicates that the three main sources of CD34+ cells currently used for transplantation have neither the same phenotype nor the same number of antigenic sites for a receptor. So, we hypothesize that migrational capacity of these cells might be different. Moreover, it seems that shear stress could favor adhesion of CD34+ cells to endothelial cells.  相似文献   

14.
Shao L  Feng W  Lee KJ  Chen BP  Zhou D 《PloS one》2012,7(3):e33499
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 μg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34(+) hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34(+)CD38(-) cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34(+)CD38(+) cells). In contrast, mouse quiescent HSCs (Pyronin-Y(low) LKS(+) cells) and cycling HSCs (Pyronin-Y(hi) LKS(+) cells) repaired the damage more efficiently than HPCs (LKS(-) cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs.  相似文献   

15.
To model the developmental pattern of human prothymocytes and thymopoiesis, we used NOD-scid/γc(-/-) mice grafted with human umbilical cord blood CD34(+) hematopoietic progenitor cells (HPCs). Human prothymocytes developed in the murine bone marrow (BM) from multipotent CD34(++)CD38(lo)lineage(-) HPCs to CD34(++)CD7(+)CD2(-) pro-T1 cells that progressed in a Notch-dependent manner to CD34(+)CD7(++)CD2(+) pro-T2 cells, which migrated to the thymus. BM prothymocyte numbers peaked 1 mo after graft, dropped at mo 2, and persisted at low levels thereafter, with only a few CD34(+)CD7(lo) prothymocytes with limited T potential being detected by mo 5. As a consequence, thymopoiesis in this xenogeneic setting began by weeks 4-6, peaked at mo 3, and decreased thenceforth. Analyzing mice grafted at 2, 4 or 8, mo of age showed that in an "older" BM, prothymocyte differentiation was perturbed and resulted in CD34(+)CD7(lo) prothymocytes with limited T potential. Whereas the early drop in BM thymopoietic activity was related to a Notch-independent loss of T potential by CD34(++)CD38(lo)lineage(-) HPCs, the later age-dependent production decline of prothymocytes was linked to a more complex mix of cell-intrinsic and microenvironmental defects. Accordingly, and contrasting with what was observed with umbilical cord blood HPCs, CD34(+) HPCs from human adult BM displayed only marginal thymopoietic activity when grafted into young 2-mo-old NOD-scid/γc(-/-) mice. These data demonstrate that the developmental pattern of BM prothymocytes during human late fetal and early postnatal life can be reproduced in humanized mice, and they suggest that onset of human thymus involution relates to decreased colonization by prothymocytes.  相似文献   

16.
Mesenchymal stromal cells (MSC) are an attractive cell-targeting vehicle for gene delivery. MIDGE (an acronym for Minimalistic, Immunologically Defined Gene Expression) construct is relatively safer than the viral or plasmid expression system as the detrimental eukaryotic and prokaryotic gene and sequences have been eliminated. The objective of this study was to test the ability of the human MSC (hMSC) to deliver the erythropoietin (EPO) gene in a nude mice model following nucleofection using a MIDGE construct. hMSC nucleofected with MIDGE encoding the EPO gene was injected subcutaneously in Matrigel at the dorsal flank of nude mice. Subcutaneous implantation of nucleofected hMSC resulted in increased hemoglobin level with presence of human EPO in the peripheral blood of the injected nude mice in the first two weeks post-implantation compared with the control groups. The basal layer of the hair shaft in the dermal layer was found to be significantly positive for immunohistochemical staining of a human EPO antibody. However, only a few basal layers of the hair shaft were found to be positively stained for CD105. In conclusion, hMSC harboring MIDGE-EPO could deliver and transiently express the EPO gene in the nude mice model. These cells could be localized to the hair follicle and secreted EPO protein might have possible role in hair regeneration.  相似文献   

17.
Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34(+) cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells.  相似文献   

18.
Bio‐engineered scaffolds used in orthopedic clinical applications induce different tissue responses after implantation. In this study, non‐stoichiometric Mg2+ ions and stoichiometric apatites, which are used in orthopedic surgery as bone substitutes, have been assayed in vitro with human adult mesenchymal stem cells (hMSC) to evaluate cytocompatibility and osteoconductivity. hMSCs from the bone marrow aspirates of orthopedic patients were isolated and analyzed by flow cytometry for the surface markers Stro1, CD29, CD44, CD71, CD73, CD90, CD105 (positive) and CD45, CD235 (negative). The hMSC were analyzed for self‐renewal capacity and for differentiation potential. The hMSC, which were grown on different biomaterials, were analyzed for (i) cytotoxicity by AlamarBlue metabolic assay, (ii) osteoconductivity by ELISA for activated focal adhesion kinase, (iii) cytoskeleton organization by fluorescence microscopy, and (iv) cell morphology which was investigated by scan electron microscopy (SEM). Results indicate that isolated cell populations agree with minimal criteria for defining hMSC cultures. Non‐stoichiometric Mg2+ and stoichiometric apatites, in granular form, represent a more favorable environment for mesenchymal stem cell adhesion and growth compared to the non‐stoichiometric Mg2+ apatite, in nano‐structured paste form. This study indicates that different forms of biomaterials modulate osteoconductivity and cellular growth by differential activation focal adhesion kinase. J. Cell. Physiol. 228: 1229–1237, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Zeng H  Li L  Chen JX 《PloS one》2012,7(4):e35905
Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.  相似文献   

20.
Although umbilical cord blood is increasingly being used in allogeneic marrow transplantation, delayed platelet engraftment is often a concern for cord blood transplant recipients. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from a bone marrow source, and cord blood, in a serum-free Media. The CD34+ cells, selected from bone marrow (BM) and umbilical cord blood (CB), were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at days 0, 4, 7, and 14 under the combination of growth factors, with cell counts. The cytokines included the recombinant human megakaryocyte growth and development (100 ng/ml), interleukin-3 (10 ng/ml), stem cell factor (100 ng/ml), flt-3 ligand (50 ng/ml) and interleukin-11 (200 ng/ml). The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the BM at day 7 (3.0 fold increase than BM), day 14 (2.4 fold), and day 17 (2.6 fold). The colony count of the BFU-E/CFU-E per CD34+ cell at day 0 was 0.14 +/- 0.023 in the CB, which was significantly higher than 0.071 +/- 0.015 in the BM. The CB-selected CD34+ cells produced more BFU-E colonies than the BM on culture days 4, 7, and 14. The BFU-E colonies from the CB cells increased markedly on culture days 4 and 7, with a 4-fold increase at day 14. The colony count of the CFU-Mk per CD34+ cell at day 0 was 0.047 +/- 0.011 in the CB-selected CD34+ cells cultures, which was higher than the 0.026 +/- 0.014 in the BM. The CB-selected CD34+ cells produced more CFU-Mk colonies than the BM on culture days 4, 7 and 14. In conclusion, the ex vivo expansion of the CB cells may be very promising in producing total cellular expansion, CFU-Mk and BFU-E compared with BM, especially at day 7. The ex vivo expansion of the CB may have rationale in making an ex vivo culture for 7 to 14 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号