首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in vascular biology and pathophysiology have revealed the need to understand better the genetic basis of arterial stiffness, disease progression and responses to clinical intervention. Towards this end, in vitro experiments on arteries from genetically modified mice promise to provide significantly increased insight into both health and disease. The need to test small arteries, often of complex shape, necessitates new methods for experimental arterial mechanics, however, ones that can provide information on local changes in geometry and strain. In this paper, we present a theoretical framework for a new panoramic digital image correlation-based method sufficient to collect such information and we demonstrate the utility of this approach via validation studies on phantoms having dimensions on the order of 500–1000 μm, similar to those of large mouse arteries. In particular, we show that placing the specimen within a conical mirror and imaging the specimen via a gimbal-mounted mirror using a single camera yields stereo information sufficient to quantify the size, shape and deformation along the full length and around the entire circumference of small arteries. In a companion paper, we show further that this approach can be implemented effectively while testing arteries within a physiological solution that maintains native biomechanical properties.  相似文献   

2.
In a companion paper, we described a theoretical foundation for and initial experimental implementation of a novel stereo-digital image correlation (DIC) method for quantifying the size, shape and deformation of small cylindrical specimens along their full length and around their entire circumference. In this paper, we further show that this panoramic-DIC method can be used to study mouse carotid arteries without affecting their native mechanical properties and show the advantage of the approach in studying more complex mouse aorta. In particular, we first resolve the ubiquitous issue of refraction in non-contacting optical measurements of strain while tissues are immersed in physiologic saline and we show that surface preparation for DIC does not affect the inferred mechanical properties either qualitatively or quantitatively, the latter via the use of a four-fibre family hyperelastic constitutive relation and associated estimation of material parameters using nonlinear regression. We thus submit that panoramic-DIC-based strain measurement has significant potential to increase our understanding of arterial mechanics in genetic models of arterial health and disease by allowing investigators to exploit advances in transgenic mice.  相似文献   

3.
In a companion paper, we described a theoretical foundation for and initial experimental implementation of a novel stereo-digital image correlation (DIC) method for quantifying the size, shape and deformation of small cylindrical specimens along their full length and around their entire circumference. In this paper, we further show that this panoramic-DIC method can be used to study mouse carotid arteries without affecting their native mechanical properties and show the advantage of the approach in studying more complex mouse aorta. In particular, we first resolve the ubiquitous issue of refraction in non-contacting optical measurements of strain while tissues are immersed in physiologic saline and we show that surface preparation for DIC does not affect the inferred mechanical properties either qualitatively or quantitatively, the latter via the use of a four-fibre family hyperelastic constitutive relation and associated estimation of material parameters using nonlinear regression. We thus submit that panoramic-DIC-based strain measurement has significant potential to increase our understanding of arterial mechanics in genetic models of arterial health and disease by allowing investigators to exploit advances in transgenic mice.  相似文献   

4.
Nerves and blood vessels are branched structures, but whether their branching patterns are established independently or coordinately is not clear. Here we show that arteries, but not veins, are specifically aligned with peripheral nerves in embryonic mouse limb skin. Mutations that eliminate peripheral sensory nerves or Schwann cells prevent proper arteriogenesis, while those that disorganize the nerves maintain the alignment of arteries with misrouted axons. In vitro, sensory neurons or Schwann cells can induce arterial marker expression in isolated embryonic endothelial cells, and VEGF(164/120) is necessary and sufficient to mediate this induction. These data suggest that peripheral nerves provide a template that determines the organotypic pattern of blood vessel branching and arterial differentiation in the skin, via local secretion of VEGF.  相似文献   

5.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

6.
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data published for rat pulmonary arteries. A structurally motivated "four fiber family" constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening caused by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models to capture these effects using a single stiffening parameter similar to the approach in isotropic continuum damage mechanics. There is a pressing need, however, for more detailed histological information coupled with more complete biaxial mechanical data for a broader range of systemic arteries.  相似文献   

7.
The structural protein elastin endows large arteries with unique biological functionality and mechanical integrity, hence its disorganization, fragmentation, or degradation can have important consequences on the progression and treatment of vascular diseases. There is, therefore, a need in arterial mechanics to move from materially uniform, phenomenological, constitutive relations for the wall to those that account for separate contributions of the primary structural constituents: elastin, fibrillar collagens, smooth muscle, and amorphous matrix. In this paper, we employ a recently proposed constrained mixture model of the arterial wall and show that prestretched elastin contributes significantly to both the retraction of arteries that is observed upon transection and the opening angle that follows the introduction of a radial cut in an unloaded segment. We also show that the transmural distributions of elastin and collagen, compressive stiffness of collagen, and smooth muscle tone play complementary roles. Axial prestresses and residual stresses in arteries contribute to the homeostatic state of stress in vivo as well as adaptations to perturbed loads, disease, or injury. Understanding better the development of and changes in wall stress due to individual extracellular matrix constituents thus promises to provide considerable clinically important insight into arterial health and disease.  相似文献   

8.
Sul JH  Han B  He D  Eskin E 《Genetics》2011,188(1):181-188
The advent of next generation sequencing technologies allows one to discover nearly all rare variants in a genomic region of interest. This technological development increases the need for an effective statistical method for testing the aggregated effect of rare variants in a gene on disease susceptibility. The idea behind this approach is that if a certain gene is involved in a disease, many rare variants within the gene will disrupt the function of the gene and are associated with the disease. In this article, we present the rare variant weighted aggregate statistic (RWAS), a method that groups rare variants and computes a weighted sum of differences between case and control mutation counts. We show that our method outperforms the groupwise association test of Madsen and Browning in the disease-risk model that assumes that each variant makes an equally small contribution to disease risk. In addition, we can incorporate prior information into our method of which variants are likely causal. By using simulated data and real mutation screening data of the susceptibility gene for ataxia telangiectasia, we demonstrate that prior information has a substantial influence on the statistical power of association studies. Our method is publicly available at http://genetics.cs.ucla.edu/rarevariants.  相似文献   

9.
The large conducting arteries in vertebrates are composed of a specialized extracellular matrix designed to provide pulse dampening and reduce the work performed by the heart. The mix of matrix proteins determines the passive mechanical properties of the arterial wall1. When the matrix proteins are altered in development, aging, disease or injury, the arterial wall remodels, changing the mechanical properties and leading to subsequent cardiac adaptation2. In normal development, the remodeling leads to a functional cardiac and cardiovascular system optimized for the needs of the adult organism. In disease, the remodeling often leads to a negative feedback cycle that can cause cardiac failure and death. By quantifying passive arterial mechanical properties in development and disease, we can begin to understand the normal remodeling process to recreate it in tissue engineering and the pathological remodeling process to test disease treatments.Mice are useful models for studying passive arterial mechanics in development and disease. They have a relatively short lifespan (mature adults by 3 months and aged adults by 2 years), so developmental3 and aging studies4 can be carried out over a limited time course. The advances in mouse genetics provide numerous genotypes and phenotypes to study changes in arterial mechanics with disease progression5 and disease treatment6. Mice can also be manipulated experimentally to study the effects of changes in hemodynamic parameters on the arterial remodeling process7. One drawback of the mouse model, especially for examining young ages, is the size of the arteries. We describe a method for passive mechanical testing of carotid arteries from mice aged 3 days to adult (approximately 90 days). We adapt a commercial myograph system to mount the arteries and perform multiple pressure or axial stretch protocols on each specimen. We discuss suitable protocols for each age, the necessary measurements and provide example data. We also include data analysis strategies for rigorous mechanical characterization of the arteries.  相似文献   

10.
Peripheral arterial occlusive disease or congenital anomalies of the major crural arteries may limit the use of the fibula free flap and should be detected preoperatively. Conventional selective angiography is the definitive standard imaging method for making this diagnosis, but it has drawbacks. A safer, cheaper, more accurate, and noninvasive alternative is desirable. The authors sought to test the hypothesis that the ankle-arm index of each of the three crural arteries, combined with pencil Doppler examination of the peroneal skin perforators, would provide adequate information to restrict the use of angiography to cases in which the outcomes of either or both of these options are insufficient. The ankle-arm index data of each of the three crural arteries, as well as pencil Doppler examination of the peroneal skin perforators of both legs of nine prospectively included patients and the nonoperated legs of 13 retrospectively included patients, were compared statistically in four different ways with the preoperative angiographic findings. A combined ankle-arm index and pencil Doppler examination is not accurate enough to detect legs or arteries with subclinical peripheral arterial occlusive disease or vascular variation and, hence, is not a sufficient basis on which to develop the surgical plan for a fibula free flap.  相似文献   

11.
Despite the crucial role of nitric oxide (NO) in the homeostasis of the vasculature, little quantitative information exists concerning NO transport and distribution in medium and large-sized arteries where atherosclerosis and aneurysm occur and hemodynamics is complex. We hypothesized that local hemodynamics in arteries may govern NO transport and affect the distribution of NO in the arteries, hence playing an important role in the localization of vascular diseases. To substantiate this hypothesis, we presented a lumen/wall model of the human aorta based on its MRI images to simulate the production, transport and consumption of NO in the arterial lumen and within the aortic wall. The results demonstrated that the distribution of NO in the aorta was quite uneven with remarkably reduced NO bioavailability in regions of disturbed flow, and local hemodynamics could affect NO distribution mainly via flow dependent NO production rate of endothelium. In addition, erythrocytes in the blood could moderately modulate NO concentration in the aorta, especially at the endothelial surface. However, the reaction of NO within the wall could only slightly affect NO concentration on the luminal surface, but strongly reduce NO concentration within the aortic wall. A strong positive correlation was revealed between wall shear stress and NO concentration, which was affected by local hemodynamics and NO reaction rate. In conclusion, the distribution of NO in the aorta may be determined by local hemodynamics and modulated differently by NO scavengers in the lumen and within the wall.  相似文献   

12.
We describe the pathologic features of mural arterial dissection involving brain-supplying arteries in a 31-y-old female chimpanzee (Pan troglodytes). Several hours after examination for a possible respiratory tract infection, the chimpanzee became unresponsive, developed seizures, and died within 18 h. At necropsy, the occipital cortex of the brain had a small area of congestion, and the cerebellar cortex contained a small necrotic area. Histologic evaluation confirmed the cortical lesions and revealed an additional necrotic area in the medulla oblongata characterized by mural dissection of the brain-supplying vertebral and basilar arteries and subsequent branches. Lesions in the cortices and medulla were within areas supplied by the vertebrobasilar system. Dissection of brain-supplying arteries has been described in humans but not previously in chimpanzees (or any other NHP), suggesting that these species might be useful in understanding this condition in humans. In addition, the lesion should be added to the NHP clinician''s and pathologist''s differential diagnosis list for similar presentations in this species.Mural dissection of brain-supplying arteries is a well-recognized clinical problem in humans.2 In fact, these dissections are a common lesion of these arteries, second only to atherosclerotic changes. Dissections of these arteries can cause pain and lead to tissue ischemia and infarction (stroke).2In our experience, the blood supply to the brain is similar between chimpanzees and humans. However, mural dissection of brain-supplying arteries in NHP species had not been described previously, and the apparent absence of information on this topic might reflect a low rate of occurrence for the condition or indicate that the condition has gone unrecognized. Regardless of the cause, similar vascular mural dissection in NHP might be expected to cause significant clinical problems for the affected animal, as well as diagnostic and management challenges for veterinary clinicians and pathologists.Here we describe the first documented occurrence of mural arterial dissection involving brain-supplying arteries in an adult chimpanzee. The objectives of this report are to make the laboratory animal community aware of this condition and to suggest that chimpanzees might help to increase our understanding of this condition in humans.  相似文献   

13.
PURPOSE: Recently, some numerical and experimental studies of blood flow in large arteries have attempted to accurately replicate in vivo arterial geometries, while others have utilized simplified models. The objective of this study was to determine how much an anatomically realistic geometry can be simplified without the loss of significant hemodynamic information. METHOD: A human femoral-popliteal bypass graft was used to reconstruct an anatomically faithful finite element model of an end-to-side anastomosis. Nonideal geometric features of the model were removed in sequential steps to produce a series of successively simplified models. Blood flow patterns were numerically computed for each geometry, and the flow and wall shear stress fields were analyzed to determine the significance of each level of geometric simplification. RESULTS: The removal of small local surface features and out-of-plane curvature did not significantly change the flow and wall shear stress distributions in the end-to-side anastomosis. Local changes in arterial caliber played a more significant role, depending upon the location and extent of the change. The graft-to-host artery diameter ratio was found to be a strong determinant of wall shear stress patterns in regions that are typically associated with disease processes. CONCLUSIONS: For the specific case of an end-to-side anastomosis, simplified models provide sufficient information for comparing hemodynamics with qualitative or averaged disease locations, provided the "primary" geometric features are well replicated. The ratio of the graft-to-host artery diameter was shown to be the most important geometric feature. "Secondary" geometric features such as local arterial caliber changes, out-of-plane curvature, and small-scale surface topology are less important determinants of the wall shear stress patterns. However, if patient-specific disease information is available for the same arterial geometry, accurate replication of both primary and secondary geometric features is likely required.  相似文献   

14.
The plasminogen activator in 117 specimen of 20 coronary and 29 pulmonary arteries occluded completely by thrombi or emboli within the adventitia and intima was studied using TODD's histochemical method. 39 cadavers were used, 1--18 hours post mortem from subjects aged from 45 to 88 years. In occluded arteries both coronary and pulmonary the plasminogen activator activity was decreased in comparison with normal and atherosclerotic patients. In coronary and pulmonary arterial thrombi a low grade focal activity of plasminogen activator was detected. It is assumed that the decrease of plasminogen activator in the occluded human arterial wall is due to the impaired oxygen supply of the vessel wall and to the consumption of the plasminogen activator for thrombus lysis. These mechanisms are likely to influence the plasminogen activator for a certain and prolonged time, since there were no changes of fibrinolysis within the vessel wall of arteria carotis in rats where an acute thrombosis was elicited by means of an electric current.  相似文献   

15.
Intraaortic balloon pumping (IABP) is an established therapeutic adjunct in the treatment of postcardiotomy/infarction low cardiac output states. Although the common femoral or iliac arteries are the preferred sites for balloon insertion, severe arterial occlusive disease may preclude entry by these methods. To circumvent this problem, alternative methods of insertion utilizing transthoracic approaches have evolved. In our institution, direct (transaortic) IABP insertion, combined with delayed sternal closure to avoid cardiac compression and possible tamponade, was performed in 28 adult postcardiotomy patients (mean age 60.4 +/- 3 years). The severity of generalized atherosclerosis was reflected in an overall survival rate of 28.6%. Retrospective analyses of the clinical courses of these patients revealed that the transaortic approach allowed utilization of larger and more effective balloons. Successful insertion of 30 and 40 ml balloons was accomplished in 27 of 28 (96%) of these patients, and one patient with a hypoplastic aorta required a 20 ml balloon. There were no complications directly attributable to this alternative site of balloon insertion, and tamponade was avoided. Delayed sternal closure was accomplished within 48 to 96 hours. We concluded that when severe peripheral vascular occlusive disease prevents insertion of intraaortic balloons via the femoral or iliac arteries in patients with low cardiac output, the alternative transaortic approach is indicated. Combined with delayed sternal closure in patients with postcardiotomy dilatation, additional benefits accrue.  相似文献   

16.
There is an emergent need for improving the microsurgical technique of variant arterial anastomosis to reduce the often seen surgery-related complications. We describe in this article our experience in improving this technique, in 73 living donor liver grafts (64 right lobes, 9 left lobes) in patients with end-stage liver disease during living donor liver transplantation. The hepatic arteries were evaluated preoperatively with computed tomography and magnetic resonance angiography. In this series, 13 grafts (17.80 %) with variant hepatic artery were conducted arterioplasty on a back-table under a loupe or a high-power microscope, which included one recipient in situ interposition vessel graft of recipient proper hepatic artery for artery reconstruction. The back-table reconstruction time was 16 ± 5.6 min. No arterial thrombosis was found in these cases during the 6-month postoperative follow-up. On the basis of our experience, we suggest that back-table microsurgical plasty for graft with arterial variation should be applied to minimize operative difficulties and to avoid arterial complications in living donor liver transplantation.  相似文献   

17.
In this paper, we present a new approach for the bi-axial characterization of in vitro human arteries and we prove its feasibility on an example. The specificity of the approach is that it can handle heterogeneous strain and stress distributions in arterial segments. From the full-field experimental data obtained in inflation/extension tests, an inverse approach, called the virtual fields method (VFM), is used for deriving the material parameters of the tested arterial segment. The obtained results are promising and the approach can effectively provide relevant values for the anisotropic hyperelastic properties of the tested sample.  相似文献   

18.
Arterial anatomical features of the upper palpebra   总被引:1,自引:0,他引:1  
The arterial anatomical features of the upper palpebra were examined in both sides of seven fresh cadavers that had been systemically injected with a lead oxide/gelatin mixture. All specimens were stereoscopically radiographed for analysis of the three-dimensional structure of the arteries and were macroscopically dissected for observation of the relationships between the arteries and the other tissues. Cross-sections were prepared from one specimen and examined histologically. In all cases, there were four arterial arcades in the upper palpebra, namely, the marginal, peripheral, superficial orbital, and deep orbital arcades. Each arcade provided small vertical branches. The vertical branches coursed on both sides of the orbicularis oculi muscle and on both sides of the tarsal plate. From these small vertical branches, fine vessels branched off to the skin, muscle, and tarsal plate. These findings are important for avoiding complications such as bleeding and are useful for designing local flaps, such as switch flaps, for reconstructive surgical procedures.  相似文献   

19.
In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.  相似文献   

20.
Flow-mediated dilation (FMD) is strongly dependent on arterial size, but the reasons for this phenomenon are poorly understood. We have previously shown that FMD is greater in small brachial arteries because the shear stress stimulus is greater in small brachial arteries. However, it is unclear why the shear stimulus is greater in small arteries. Furthermore, this relationship has not been investigated in other, differently sized arterial beds. Postischemic systolic shear stress and resulting FMD were evaluated in the brachial and femoral arteries of 24 young, healthy adults using phase-contrast magnetic resonance imaging. Arterial shear and radius were calculated from the velocity profile via a best-fit parabola before and after occlusion. Summing the velocity pixels provided hyperemic systolic flow. FMD was proportional to hyperemic shear in the brachial and femoral arteries (P < 0.0001, r = 0.60). Hyperemic systolic flow was proportional to radius2 (P < 0.0001, r = 0.93). Applying this relationship to the Poiseuille equation (shear is proportional to flow/radius3) shows that hyperemic shear is proportional to radius2/radius3 and, therefore, explains why hyperemic shear is proportional to 1/radius. We conclude that FMD is proportional to hyperemic systolic shear stress in both the brachial and the femoral arteries. The hyperemic shear stimulus for FMD is greater in small arteries due to the dependence of postischemic systolic flow on radius squared. Therefore, greater FMD in small arteries does not necessarily reflect better conduit artery endothelial function. Evaluating the shear stimulus using phase-contrast magnetic resonance imaging enhances the understanding of mechanisms underlying FMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号