共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The molecular mechanisms that regulate gene expression can evolve either by changing the cis-acting DNA elements in promoters, or by replacing the trans-acting regulatory proteins. New data from yeast species show that both processes can happen. 相似文献
3.
Regulatory T cells play a crucial role in the homeostasis of the immune response. In addition to CD4+Foxp3+ regulatory T cells, several subsets of Foxp3- regulatory T cells, such as T helper 3 (Th3) cells and type 1 regulatory T (Tr1) cells, have been described in mice and human. Accumulating evidence shows that naïve B cells contribute to tolerance and are able to promote regulatory T cell differentiation. Naïve B cells can convert CD4+CD25- T cells into CD25+Foxp3- regulatory T cells, named Treg-of-B cells by our group. Treg-of-B cells express LAG3, ICOS, GITR, OX40, PD1, and CTLA4 and secrete IL-10. Intriguingly, B-T cell-cell contact but not IL-10 is essential for Treg-of-B cells induction. Moreover, Treg-of-B cells possess both IL-10-dependent and IL-10-independent inhibitory functions. Treg-of-B cells exert suppressive activities in antigen-specific and non-antigen-specific manners in vitro and in vivo. Here, we review the phenotype and function of Foxp3+ regulatory T cells, Th3 cells, Tr1 cells, and Treg-of-B cells. 相似文献
4.
McFadden C Morgan R Rahangdale S Green D Yamasaki H Center D Cruikshank W 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(10):6439-6445
As a natural ligand for CD4, IL-16 has been shown to preferentially induce migration in Th1 cells, and, in long-term cultures with IL-2, IL-16 facilitates the expansion of CD4(+)CD25(+) cells. In addition, IL-16 has an immunomodulatory role in asthmatic inflammation, as exogenous administration significantly reduces inflammation and airway hyperreactivity. The mechanism for this, however, is not clear. Based on its functional characteristics and potential immunomodulatory role, we investigated the ability of IL-16 to recruit and influence the development of T regulatory (Treg) cells. We now demonstrate that IL-16 preferentially induces migration in a CD25(+)CTLA-4(+) human T cell subset and that responding cells produce IFNgamma and TGFbeta but not IL-10. These cells are relatively unresponsive to antigenic stimulation and can suppress proliferation and IL-5, but not IFNgamma, production by autologous T cells. We further demonstrate that IL-16-recruited cells are enriched for Forkhead box P3 (Foxp3). In addition, we find that IL-16 stimulation may facilitate de novo induction of Foxp3(+) Treg cells, because the stimulation of FoxP3-negative T cells for 48 h results in the expression of FoxP3 mRNA and protein. These data indicate that at sites of inflammation IL-16 may contribute to selective Treg cell expansion through the preferential induction of a migratory response from existing Treg cells, as well as by the induction of de novo generation of FoxP3(+) cells. These findings offer a potential mechanism for the immunosuppressive effects of IL-16 seen in Th2-mediated inflammation. 相似文献
5.
Kleijwegt FS Laban S Duinkerken G Joosten AM Koeleman BP Nikolic T Roep BO 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(12):6357-6364
Infectious tolerance is a term generally assigned to the process through which regulatory T cells (Tregs) transfer immunoregulatory properties to other T cells. In this study, we demonstrated that a similar process applies to human dendritic cells (DCs), albeit through a different mechanism. We induced and cloned proinsulin-specific Tregs using tolerogenic DCs and investigated mechanisms by which induced Ag-specific regulatory T cells (iaTregs) endorse the suppressive effects. iaTregs expressed FOXP3, programmed death-1, and membrane-bound TGF-β and upregulated IL-10 and CTLA-4 after stimulation with the cognate Ag. The iaTregs suppressed effector T cells only when both encountered the cognate Ags on the same APCs (linked suppression). This occurred independently of IL-10, TGF-β, programmed death-1, or CTLA-4. Instead, iaTregs used a granzyme B-mediated mechanism to kill B cells and monocytes, whereas proinflammatory DCs that resisted being killed were induced to upregulate the inhibitory receptors B7 (family) homolog 3 and ICOS ligand. These re-educated mature monocyte-derived dendritic cells (mDCs) suppressed effector T cells and induced IL-10-producing cells from the naive T cell pool. Our data indicated that human tolerogenic DCs confer infectious tolerance by inducing Ag-specific Tregs, which, in turn, re-educate proinflammatory mature DCs into DCs with regulatory properties. 相似文献
6.
7.
8.
9.
10.
11.
Immune regulation through mitochondrion-dependent dendritic cell death induced by T regulatory cells
Dendritic cells (DCs) harbor an active mitochondrion-dependent cell death pathway regulated by Bcl-2 family members and undergo rapid turnover in vivo. However, the functions for mitochondrion-dependent cell death of DCs in immune regulation remain to be elucidated. In this article, we show that DC-specific knockout of proapoptotic Bcl-2 family members, Bax and Bak, induced spontaneous T cell activation and autoimmunity in mice. In addition to a defect in spontaneous cell death, Bax(-/-)Bak(-/-) DCs were resistant to killing by CD4(+)Foxp3(+) T regulatory cells (Tregs) compared with wild-type DCs. Tregs inhibited the activation of T effector cells by wild-type, but not Bax(-/-)Bak(-/-), DCs. Bax(-/-)Bak(-/-) DCs showed increased propensity for inducing autoantibodies. Moreover, the autoimmune potential of Bax(-/-)Bak(-/-) DCs was resistant to suppression by Tregs. Our data suggested that Bax and Bak mediate intrinsic spontaneous cell death in DCs, as well as regulate DC killing triggered by Tregs. Bax- and Bak-dependent cell death mechanisms help to maintain DC homeostasis and contribute to the regulation of T cell activation and the suppression of autoimmunity. 相似文献
12.
How regulatory T cells work 总被引:2,自引:0,他引:2
Regulatory T (T(Reg)) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. However, they also limit beneficial responses by suppressing sterilizing immunity and limiting antitumour immunity. Given that T(Reg) cells can have both beneficial and deleterious effects, there is considerable interest in determining their mechanisms of action. In this Review, we describe the basic mechanisms used by T(Reg) cells to mediate suppression and discuss whether one or many of these mechanisms are likely to be crucial for T(Reg)-cell function. In addition, we propose the hypothesis that effector T cells may not be 'innocent' parties in this suppressive process and might in fact potentiate T(Reg)-cell function. 相似文献
13.
Induction and maintenance of peripheral tolerance is an important phenomenon for the control of homeostasis in the immune system. There is now compelling evidence for CD4(+) T cells that prevent immune pathology, both in autoimmunity and in transplantation. However, the mechanisms involved in the specific differentiation of these T cells are unknown. We had previously shown that repetitive stimulations of naive T cells in the presence of IL-10 induce the differentiation of T regulatory cells 1. We further dissected the mechanism of IL-10 function and demonstrated that IL-10 acts by the down-regulation of most costimulatory molecules without modifying the expression of CD58. Using artificial APCs expressing various costimulatory molecules, we demonstrated that, in contrast to other costimulation patterns, costimulation via CD2 alone, in the absence of costimulations through CD28- or LFA-1, induced T cell anergy in an IL-10-independent pathway along with the differentiation of Ag-specific regulatory T cells. T regulatory cell-1 differentiation via CD2 was very efficient as both high IL-10 secretion and regulatory function were observed after the first stimulation of naive T cells with CD32-CD58 L cells. The possibility to rapidly induce the differentiation of Ag-specific regulatory T cells will certainly accelerate their characterization and their potential use as regulators of T cell-mediated diseases. 相似文献
14.
Taylor A Verhagen J Akdis CA Akdis M 《Microbes and infection / Institut Pasteur》2005,7(7-8):1049-1055
Anergy, tolerance and active suppression may not be independent events, but rather involve similar mechanisms and cell types in immune regulation. Induction of allergen-specific T(Reg) cells seems essential for maintaining a healthy immune response towards allergens. By utilizing multiple secreted cytokines and surface molecules, antigen-specific T(Reg) cells may re-direct an inappropriate immune response against allergens or auto-antigens. 相似文献
15.
16.
17.
The adaptive immune system of a vertebrate may attack its own body, causing autoimmune diseases. Regulatory T cells suppress the activity of the autoreactive effector T cells, but they also interrupt normal immune reactions against foreign antigens. In this paper, we discuss the optimal number of regulatory T cells that should be produced. We make the assumptions that some self-reactive immature T cells may fail to interact with their target antigens during the limited training period and later become effector T cells causing autoimmunity, and that regulatory T cells exist that recognize self-antigens. When a regulatory T cell is stimulated by its target self-antigen on an antigen-presenting cell (APC), it stays there and suppresses the activation of other naive T cells on the same APC. Analysis of the benefit and the harm of having regulatory T cells suggests that the optimal number of regulatory T cells depends on the number of self-antigens, the severity of the autoimmunity, the abundance of pathogenic foreign antigens, and the spatial distribution of self-antigens in the body. For multiple types of self-antigen, we discuss the optimal number of regulatory T cells when the self-antigens are localized in different parts of the body and when they are co-localized. We also examine the separate regulation of the abundances of regulatory T cells for different self-antigens, comparing it with the situation in which they are constrained to be equal. 相似文献
18.
19.
An overview of regulatory T cells 总被引:3,自引:0,他引:3
Groux H 《Microbes and infection / Institut Pasteur》2001,3(11):883-889
The induction of tolerance is essential for the maintenance of immune homeostasis and for the prevention of autoimmune diseases. To induce tolerance the immune system uses several mechanisms, including the deletion of autoreactive T cells, the induction of anergy and active suppression of autoimmune responses. The mechanisms of thymic deletion and anergy of autoreactive T cells are well characterized, whereas active suppression by T regulatory cells, which has recently emerged as an essential component of the immune response to induce peripheral tolerance, is less well understood. Results from seminal studies by a number of laboratories have renewed interest in (CD4(+)) T cells with regulatory properties and some of the researchers who have been involved in this effort have contributed to this Forum on regulatory T cells. This general overview on regulatory T cells comments on recent results in the field of regulatory T cells and presents our current knowledge on Tr1 T cells. 相似文献
20.
Aerts NE Dombrecht EJ Ebo DG Bridts CH Stevens WJ De Clerck LS 《Cellular immunology》2008,251(2):109-115
Most cell surface markers for CD4+CD25+ regulatory T cells (Tregs) are also expressed by activated non-regulatory T cells. Recently, CD127 down-regulation was found to identify functional Tregs in healthy individuals, but there are no data from patients with inflammatory conditions. We examined peripheral blood mononuclear cells (PBMC) from rheumatoid arthritis patients with active inflammation and from healthy controls, and found that CD4+ T cells contained an equal proportion of CD25+CD127−/low cells in both groups. In patients, not all these cells expressed intracellular FOXP3. Upon activation by anti-CD3/anti-CD28, PBMC rapidly down-regulated CD127, while FOXP3 up-regulation was transitory and occurred in fewer cells. The activated cells were not anergic to restimulation and had no suppressive effects. The distinct kinetics indicate that the FOXP3−CD127−/low cells in rheumatoid arthritis patients most likely represent activated non-regulatory T cells. This complicates the use of CD127 for identification of Tregs in inflammatory diseases. 相似文献