首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

2.
A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen’s polyandry is positively associated with measures of her colony’s fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry– 15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1) a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2) a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor.  相似文献   

3.
The mating system of honey bees (genus Apis) is extremely polyandrous, where reproductive females (queens) typically mate with 12 or more males (drones) during their mating flight(s). The evolutionary implications for hyperpolyandry have been subject to considerable debate and empirical testing because of the need to understand the proximate mechanisms that drive such extreme mating behavior despite the potential costs. The ability of queens to gauge and adjust their reproductive success is therefore important for selection to act on queen mating number at both the evolutionary (colony-level) and proximate (individual-level) timescales. We observed the mating flight activities of 80 queens in their respective mating nucleus hives each with a modified entrance that restricts flight attempts. We also attached a small weight (0, 16, or 38 mg) onto each queen’s thorax as a means of imposing additional flight costs. We then compared queens that were restricted from taking multiple mating flights to those that started oviposition after a single flight for their mating numbers as quantified by microsatellite analyses of their respective worker offspring. We found that neither additional weight nor restricted mating attempts had any significant effect on the effective mating frequencies of the experimental queens during their single mating flight. This observation suggests that queens are not adjusting their nuptial flight activity according to their precise mating number during their flight. These findings provide insights into the proximate regulation of honey bee queen mating behavior and the fitness consequences of hyperpolyandry at the colony level.  相似文献   

4.
Assessing the mating 'health' of commercial honey bee queens   总被引:1,自引:0,他引:1  
Honey bee queens mate with multiple males, which increases the total genetic diversity within colonies and has been shown to confer numerous benefits for colony health and productivity. Recent surveys of beekeepers have suggested that 'poor queens' are a top management concern, thus investigating the reproductive quality and mating success of commercially produced honey bee queens is warranted. We purchased 80 commercially produced queens from large queen breeders in California and measured them for their physical size (fresh weigh and thorax width), insemination success (stored sperm counts and sperm viability), and mating number (determined by patriline genotyping of worker offspring). We found that queens had an average of 4.37 +/- 1.446 million stored sperm in their spermathecae with an average viability of 83.7 +/- 13.33%. We also found that the tested queens had mated with a high number of drones (average effective paternity frequency: 17.0 +/- 8.98). Queen "quality" significantly varied among commercial sources for physical characters but not for mating characters. These findings suggest that it may be more effective to improve overall queen reproductive potential by culling lower-quality queens rather than systematically altering current queen production practices.  相似文献   

5.
Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock.  相似文献   

6.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

7.
Estimating the population size of social bee colonies in the wild is often difficult because nests are highly cryptic. Because of the honeybee (Apis mellifera) mating behaviour, which is characterized by multiple mating of queens at drone congregation areas (DCA), it is possible to use genotypes of drones caught at these areas to infer the number of colonies in a given region. However, DCAs are difficult to locate and we assess the effectiveness of an alternative sampling technique to determine colony density based on inferring male genotypes from queen offspring. We compare these methods in the same population of wild honeybees, Apis mellifera scutellata. A set of linked microsatellite loci is used to decrease the frequency of recombination among marker loci and therefore increase the precision of the estimates. Estimates of population size obtained through sampling of queen offspring is significantly larger than that obtained by sampling drones at DCAs. This difference may be due to the more extensive flying range of queens compared with drones on mating flights. We estimate that the population size sampled through queen offspring is about double that sampled through drones.  相似文献   

8.
  1. It is often necessary to assess the density of honey bee colonies in an environment. In theory, a random sample of males obtained at a mating lek (Drone Congregation Area) can be used to infer the number of queens that contributed sons to the sample, and thereby estimate colony density based on the area from which drones are drawn to a DCA. Because of its utility and efficiency, the technique is being increasingly used. However, the accuracy of the method has never been evaluated, and there are no recommendations for sample size.
  2. Here, we infer the genotypes of 322 mother queens from the genotypes of 2329 drones caught at a single DCA using the program COLONY. We then use this realistic pool of queen genotypes to generate multiple simulated data sets of drone genotypes, varying the number of queens and sons that each queen contributed to the sample.
  3. We find that the technique provides an accurate estimate (<10% error) of the total number of families present in a drone sample, provided that queens contribute at least six drones to the sample on average. This threshold can be reduced when colony density is low. Non‐sampling error only becomes significant when queens contribute fewer than three sons on average across simulated samples.
  4. We conclude that the technique is robust and can be used with confidence provided that the sample size is adequate.
  相似文献   

9.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

10.
Five microsatellite loci were used to determine paternities in six Apis mellifera colonies headed by naturally mated queens. The last inseminating males were identified by collecting and genotyping the mating sign left in the genital tract of each queen. Significant differences in paternity frequencies were observed between males, but the proportion of worker and queen offspring sired by the last inseminating drone did not differ significantly from those of other drones. Each male kept his rank of precedence for the different cohorts, although the variance in subfamily proportions decreased over time, most notably in the colony displaying the lowest level of polyandry. These results suggest that, if sperm competition exists in the honeybee, it does not significantly increase the fitness of the last inseminating drone. The spermatozoa of the different inseminating drones are not totally mixed before they reach the spermatheca, in particular when only few males mate with the queen. The weak difference in the subfamily proportions observed between queen and worker samples confirms that nepotistic interactions are rare. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

11.
This study was built on the assumption that mother (queen) and workers (nurses) distribute their genes either through swarms (female biomass) or through the drones (male biomass). The swarming mood of the bee colonies was suppressed by an exactly defined increase in drone rearing. We studied the efficiency of reproductive investments (on genetic and energetic levels) of the mother and workers to the next generations. The equalization of fitness of the mother and nurses was achieved by a deliberately induced change in numerically stable sex asymmetry of a bee colony. A swarm was compensated with its energy demand and a volume ratio of distributed genetic information. The newly introduced term “reproductive investment complex” (RIC) includes the reproductive potential of the mother and reproductive energy of workers into care for the mother and for the brood. The number of individuals of one sex was closely connected with the weight of individuals of the oppposite sex. The described method of suppression of swarming mood was successfully tested on 60 honey bee colonies over seven years (2003–2009). A number of beekeepers that were acquainted with this method confirmed the success.  相似文献   

12.
Honey bee queens are exceptionally promiscuous. Early in life, queens perform one to five nuptial flights, mating with up to 44 drones. Many studies have documented potential benefits of multiple mating. In contrast, potential costs of polyandry and the sensitivity of queens to such costs have largely been ignored because they are difficult to address experimentally. To consider one aspect of mating costs to queens, the difficulty of flight, we compared flight behavior and success among a group of control queens and two experimental groups of queens that carried lead weights of two different sizes. For each queen, we assessed the number and duration of all flights and, after egg-laying commenced, the amount of stored sperm and the number of mates in terms of the offspring's patrilineal genetic diversity. Added weights quantitatively decreased the number of flights, the mean duration of flights and consequently the total time spent flying. Mating success in terms of sperm quantity and patrilines detected among the queens' offspring was also negatively impacted by the experimental manipulation. Thus, it can be concluded that the flight effort of honey bee queens during their mating period is adjusted in response to an experimentally increased cost of flying with multiple consequences for their mating success. Our results suggest that queen behavior is flexible and mating costs deserve more attention to explain the extreme polyandry in honey bees.  相似文献   

13.
作为重要的传粉昆虫,蜜蜂蜂群损失现象受到广泛关注。研究表明,蜂王问题是导致蜂群损失的主要因素之一。蜂王是蜂群中唯一雌性生殖器官发育完全的个体,是维持蜂群存续的关键。蜂王质量决定了蜂群的群势以及生产性能,对蜂群的发展和存活至关重要。本文详细介绍了表征蜂王质量的相关指标及其在蜂王选育过程中的应用,深入论述了幼虫日龄、营养、交尾、环境温度、病虫害以及农药等相关因素对蜂王质量及其性状表现的影响,以期为蜂王的培育和使用以及蜜蜂资源的保护和利用提供参考。  相似文献   

14.
1. Information about the density of wild honey bee (Apis spp.) colonies in an ecosystem is central to understanding the functional role of honey bees in that ecosystem, necessary for effective biosecurity response planning, and useful for determining whether pollination services are adequate. However, direct visual surveys of colony locations are not practical at ecosystem scales. Thus, indirect methods based on population genetic analysis of trapped males have been proposed and implemented. 2. In this review, indirect methods of assessment of honey bee colony densities are described, which can be applied at ecosystem scales. The review also describes how to trap males in the field using the Williams drone trap (or virgin queens) the appropriate genetic markers and statistical analyses, and discusses issues surrounding sample size. 3. The review also discusses some outstanding issues concerning the methods and the conversion of estimated colony number to colony density per km2. The appropriate conversion factor will require further research to determine the area over which a drone trap draws drones.  相似文献   

15.
Normally, worker honey bees (Apis mellifera) only lay eggs when their colony is queenless. When a queen is present, worker egg-laying is controlled by mutual “policing” behavior in which any rare worker-laid eggs are eaten by other workers. However, an extremely rare behavioral phenotype arises in which workers develop functional ovaries and lay large numbers of eggs despite the presence of the queen. In this study, microsatellite analysis was used to determine the maternity of drones produced in such a colony under various conditions. One subfamily was found to account for about 90% of drone progeny, with the remainder being laid by other subfamilies or the queen. No evidence of queen policing was found. After a one-month period of extreme worker oviposition in spring, the colony studied reverted to normal behavior and showed no signs of worker oviposition. However, upon removal of the queen, workers commenced oviposition very quickly. Significantly, the subfamily that laid eggs when the queen was present did not contribute to the drone production when the colony was queenless. However, another subfamily contributed a disproportionately large number of drones. The frequency of worker oviposition appears to be determined by opposing selective forces. Individual bees benefit from personal reproduction, whereas other bees and the colony are disadvantaged by it. Thus a behavioral polymorphism can be maintained in the population in which some workers can escape worker policing, with balancing selection at the colony level to detect and eliminate these mutations.  相似文献   

16.
Honey bee workers will perform vibration signals on adult drones, which respond by increasing the time spent receiving trophallaxis. Because trophallaxis provides the proteins for sexual maturation, workers could direct vibration signals towards drones showing certain physical characteristics, potentially influencing drone development and colony reproductive output. We examined the influence of drone condition on the likelihood of receiving vibration signals by comparing body weight, protein concentrations, and hemolymph juvenile hormone (JH) titers between drones that received the vibration signal and same-age, non-vibrated controls. Vibrated and control drones did not differ in total body weight, abdomen weight, abdomen-to-body weight ratio, total protein concentrations, or hemolymph JH titers. In contrast, vibrated drones had significantly lower thorax weight and smaller thorax-to-body weight ratios compared with controls. Because relative thorax weight may affect flight ability and mating success, workers could use the vibration signal to increase the care received by less developed drones, potentially contributing to the production of greater numbers of competitive males. However, the differences in thorax weights, while significant, were very small, and it is unknown how such slight differences might be assessed by workers or affect drone performance. Nevertheless, vibration signals performed on drones may provide opportunities for exploring the effect of the quality of reproductive individuals on caste interactions in honey bees.  相似文献   

17.
Colony reproduction in honey bees involves complex interactions between sterile workers and reproductive castes. Although worker–queen interactions have been studied in detail, worker–drone interactions are less well understood. We investigated caste interactions in honey bees by determining the age and behavior of workers that perform vibration signals, trophallaxis, and grooming with drones. Workers of all ages could engage in the different interactions monitored, although workers that performed vibration signals on drones were significantly older than those engaging in trophallaxis and grooming. Only 3–8% of workers engaged in the different behaviors were monitored. Compared with workers that performed vibration signals only on workers (‘worker vibrators’), those that performed signals on both workers and drones (‘drone vibrators’) had greater movement rates inside the nest, higher vibration signaling rates, and were more likely to have an immediate association with foraging. Both worker vibrators and drone vibrators contacted drones of all ages as they moved through the nest. However, drone vibrators contacted drones at higher rates, contacted slightly, but significantly younger drones, and were more likely to engage in trophallaxis and grooming with drones, in addition to vibrating them. Taken together, our results suggest that tiny proportions of workers belonging to separate, but overlapping age groups provide most of the care received by adult drones, and that drone vibrators comprise a subset of signalers within a colony that have an increased tendency to contact and interact with drones. Vibratory, tactile signals are involved in colony reproductive and movement decisions in a number of species of bees, wasps and ants, and may provide valuable tools for investigating caste interactions in many insect societies.  相似文献   

18.
To replace deceased colonies or to increase the colony numbers, beekeepers often purchase honey bees, Apis mellifera L., in a package, which is composed of 909-1,364 g (2-3 lb) of worker bees and a mated queen. Packages are typically produced in warm regions of the United States in spring and shipped throughout the United States to replace colonies that perished during winter. Although the package bee industry is effective in replacing colonies lost in winter, packages also can be an effective means of dispersing diseases, parasites, and undesirable stock to beekeepers throughout the United States. To evaluate the quality of packages, we examined 48 packages representing six lines of bees purchased in the spring 2006. We estimated levels of the parasitic mite Varroa destructor Anderson & Trueman and the percentage of drone (male) honey bees received in packages. We surveyed for presence of the tracheal honey bee mite, Acarapis woodi (Rennie), and a microsporidian parasite, Nosema spp., in the shipped bees. We found significant differences in both the mean Varroa mite per bee ratios (0.004-0.054) and the average percentage of drones (0.04-5.1%) in packages from different producers. We found significant differences in the number of Nosema-infected packages (0.0-75.0%) among the six lines. No packages contained detectable levels ofA. woodi. Considering the observed variability among honey bee packages, beekeepers should be aware of the potential for pest and disease infestations and high drone levels in packages.  相似文献   

19.
Summary: Honey bee queens have been shown to mate with a high number of males, but the evolutionary advantage of this high degree of polyandry is still unclear. Mating data from a number of different Apis species and subspecies are needed to help explain polyandry in honey bees. Pupae of four colonies of Apis mellifera sicula from Sicily were genotyped on three polymorphic microsatellite loci. The genotypes of the queens and fathering drones from these colonies were deduced from the genotypes of the pupae. We found no evidence for polygyny, at least we can exclude more than one functional queen, even super-sister queens, if maternity contributions are equal. The four queens mated with at least 5 to 12 (mean: 9.3 - 3.0 SE) drones. We estimate the error in our determination of the mating frequency that is caused by limited genetic resolution of the marker loci to be less than 1 mating given that Hardy-Weinberg assumptions are satisfied. However, the drones the single queens mated with may be a non-random sample of the whole population, so that detection error may be more severe. The average pedigree relatedness among workers within the colonies was estimated to be 0.341. These results are within the range of those found in other A. mellifera subspecies and Apis species except A. dorsata. We speculate that mating frequency may be positively correlated with drone density.  相似文献   

20.
Genetic diversity promotes homeostasis in insect colonies   总被引:10,自引:0,他引:10  
Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号