首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
双组分系统由感受信号输入的组氨酸(His) 蛋白激酶和调节信号输出的反应调控因子组成,涉及许多原核生物、真菌、黏菌和植物的各种信号转导途径。在植物中,还存在更复杂的包括杂合的His激酶、磷酸传递中间体和反应调控因子的信号系统,称为多步骤双组分系统。最近的研究表明,双组分系统在对环境刺激和生长调节剂(如乙烯、细胞分裂素、光和渗透胁迫)的反应中起重要作用。  相似文献   

2.
Two-component signal transduction systems, comprised of histidine kinase and its cognate response regulator, are the predominant mechanism by which microorganisms sense and respond to changes in many different environmental conditions. Different Thermotoga maritima histidine kinases have been used as prototypes; among them, the orphan TM0853 has been presented as a structural model of class I histidine kinases. We used phosphotransfer assays to identify TM0468 as the partner response regulator of TM0853. Since full-length TM0853 can be produced as a soluble protein in Escherichia coli, it was used to analyze the union stoichiometry in an intact two-component system for the first time. We demonstrate that TM0853, or its cytoplasmic catalytic portion, form a 1:1 complex with TM0468 with native PAGE. The complex band is unique, even in the presence of an excess of each individual protein, indicating that the union is cooperative. We corroborated these findings by using ultracentrifugation assays. Therefore, we propose that the general mode of interaction in an orthodox two-component system may be the stoichiometric and cooperative complex between a dimeric histidine kinase and two response regulators. Finally, we have been able to produce protein crystals of the complex between the cytoplasmic portion of TM0853 and TM0468 that diffract to 2.8 A Bragg spacing.  相似文献   

3.
双组分系统由感受信号输入的组氨酸(His)蛋白激酶和调节信号输出的反应调控因子组成,涉及许多原核生物、真菌、黏菌和植物的各种信号转导途径.在植物中,还存在更复杂的包括杂合的His激酶、磷酸传递中间体和反应调控因子的信号系统,称为多步骤双组分系统.最近的研究表明,双组分系统在对环境刺激和生长调节剂(如乙烯、细胞分裂素、光和渗透胁迫)的反应中起重要作用.  相似文献   

4.
Two-component and phosphorelay signal transduction systems are the major means by which bacteria recognize and respond to a variety of environmental stimuli. Although several model systems, including sporulation in Bacillus subtilis and chemotaxis in Escherichia coli, have been extensively studied, the two-component signal transduction systems in industrially important actinomycetes are not well studied. We report the molecular and biochemical characterization of a novel two-component signal system, amrA-amkA,from the rifamycin-SV-producing Amycolatopsis mediterranei U32. The deduced sequences of amkAand amrA contain all the structural features that are highly conserved in the typical bacterial histidine kinases and response regulators, respectively. BLAST analyses showed that AmrA and AmkA displayed high similarities to AfsQ1/AfsQ2 of Streptomyces coelicolor and MtrA/MtrB of Mycobacterium tuberculosis. The amrAand amkA genes were over-expressed and the gene products were purified from E. coli. Biochemical studies showed that AmkA is able to autophosphorylate, supporting its functional assignment as a histidine kinase. That AmrA functions as the cognate response regulator for histidine kinase AmkA was demonstrated by in vitro phosphotransfer from [gamma-(32)P]ATP-labeled AmkA to AmrA. Rifamycin SV production was also decreased by 10-20% in amrAor amkA gene disruption mutants under the tested condition. Although the detailed regulatory mechanism is still unknown, this is the first report regarding the involvement of two-component signal systems in rifamycin biosynthesis in the genus Amycolatopsis.  相似文献   

5.
Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed.  相似文献   

6.
二元系统是细菌中主要的信号传导途径 ,磷酸根转移介导的信号途径使细胞得以感受各种环境刺激并产生应答。组氨酸蛋白质激酶的自动磷酸化将磷酸基团传给反应调节蛋白 ,反过来作为分子开关控制不同的效应物活性。蓝藻是地球上最早出现的光合自养原核生物 ,在长期的生物进化过程中 ,它们发展了一系列独特的形态和生理代谢机制 ,使其能在各种不同生境中生长、繁殖和扩增。研究蓝藻信号传导途径为阐明其高度的环境适应性提供了理论基础。  相似文献   

7.
Two-component signal transduction systems enable bacteria to sense and respond to a wide range of environmental stimuli. Sensor histidine kinases transmit signals to their cognate response regulators via phosphorylation. The faithful transmission of information through two-component pathways and the avoidance of unwanted cross-talk require exquisite specificity of histidine kinase-response regulator interactions to ensure that cells mount the appropriate response to external signals. To identify putative specificity-determining residues, we have analyzed amino acid coevolution in two-component proteins and identified a set of residues that can be used to rationally rewire a model signaling pathway, EnvZ-OmpR. To explore how a relatively small set of residues can dictate partner selectivity, we combined alanine-scanning mutagenesis with an approach we call trajectory-scanning mutagenesis, in which all mutational intermediates between the specificity residues of EnvZ and another kinase, RstB, were systematically examined for phosphotransfer specificity. The same approach was used for the response regulators OmpR and RstA. Collectively, the results begin to reveal the molecular mechanism by which a small set of amino acids enables an individual kinase to discriminate amongst a large set of highly-related response regulators and vice versa. Our results also suggest that the mutational trajectories taken by two-component signaling proteins following gene or pathway duplication may be constrained and subject to differential selective pressures. Only some trajectories allow both the maintenance of phosphotransfer and the avoidance of unwanted cross-talk.  相似文献   

8.
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.  相似文献   

9.
Grefen C  Harter K 《Planta》2004,219(5):733-742
Two-component systems have emerged as important sensing/response mechanisms in higher plants. They are composed of hybrid histidine kinases, histidine-containing phosphotransfer domain proteins and response regulators that are biochemically linked by His-to-Asp phosphorelay. In plants two-component systems play a major role in cytokinin perception and signalling and contribute to ethylene signal transduction and osmosensing. Furthermore, developmental processes like megagametogenesis in Arabidopsis thaliana and flowering promotion in rice (Oryza sativa) involve elements of two-component systems. Two-component-like elements also function as components of the Arabidopsis circadian clock. Because of the molecular mode of signalling, plant two-component systems also appear to serve as intensive cross talk and signal integration machinery. In this review we summarize the present knowledge about the principles and functions of two-component systems in higher plants and address several critical points with respect to cross talk, signal integration and specificity.Abbreviations AHK Arabidopsis histidine kinase - AHP Arabidopsis histidine-containing phosphotransfer domain protein - APRR Arabidopsis pseudo response regulator - ARR Arabidopsis response regulator - CCT CONSTANS CONSTANS-like TOC1 - CKI Cytokinin insensitive - CRE Cytokinin response - CTR Constitutive triple response - Ehd Early heading date - EIN Ethylene insensitive - ERS Ethylene response sensor - ETR Ethylene resistant - GARP-motif Found in Golden2 of maize, Arabidopsis B-type response regulators and Chlamydomonas Psr1 - HPt Histidine-containing phosphotransfer domain - NLS Nuclear localization signal - phyB Phytochrome B - TCS Two-component signalling - TOC Timing of CAB (chlorophyll a/b-binding protein) expression - WOL Wooden leg  相似文献   

10.
11.
Rewiring the specificity of two-component signal transduction systems   总被引:1,自引:0,他引:1  
Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.  相似文献   

12.
Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.  相似文献   

13.
Wolanin PM  Thomason PA  Stock JB 《Genome biology》2002,3(10):reviews3013.1-reviews30138
Histidine protein kinases (HPKs) are a large family of signal-transduction enzymes that autophosphorylate on a conserved histidine residue. HPKs form two-component signaling systems together with their downstream target proteins, the response regulators, which have a conserved aspartate in a so-called 'receiver domain' that is phosphorylated by the HPK. Two-component signal transduction is prevalent in bacteria and is also widely used by eukaryotes outside the animal kingdom. The typical HPK is a transmembrane receptor with an amino-terminal extracellular sensing domain and a carboxy-terminal cytosolic signaling domain; most, if not all, HPKs function as dimers. They show little similarity to protein kinases that phosphorylate serine, threonine or tyrosine residues, but may share a distant evolutionary relationship with these enzymes. In excess of a thousand known genes encode HPKs, which are important for multiple functions in bacteria, including chemotaxis and quorum sensing, and in eukaryotes, including hormone-dependent developmental processes. The proteins divide into at least 11 subfamilies, only one of which is present in eukaryotes, suggesting that lateral gene transfer gave rise to two-component signaling in these organisms.  相似文献   

14.
Two-component systems, composed of a histidine kinase (HK) and a response regulator (RR), are the major signal transduction devices in bacteria. Originally it was thought that these two components function as linear, phosphorylation-driven stimulus-response system. Here, we will review how accessory proteins are employed by HKs and RRs to mediate signal integration, scaffolding, interconnection and allosteric regulation, and how these two components are embedded in regulatory networks.  相似文献   

15.
Signalling pathways in two-component phosphorelay systems   总被引:12,自引:0,他引:12  
Two-component systems are characterized by phosphotransfer reactions involving histidine and aspartate residues in highly conserved signalling domains. Although the basic principles of signal transduction by these systems have been elucidated, several important aspects, such as their integration into more complex cellular regulatory networks and the molecular basis of the specificity of signal transduction, remain unknown.  相似文献   

16.
The emergence and spread of hospital acquired multi drug resistant bacteria present a need for new antibiotics with innovative mode of action. Advances in molecular microbiology and genomics have led to the identification of numerous bacterial genes coding for proteins that could potentially serve as targets for antibacterial compounds. Histidine kinase promoted two-component systems are extremely common in bacteria and play an important role in essential signal transduction for adapting to bacterial stress. Since signal transduction in mammals occurs by a different mechanism, inhibition of histidine kinases could be a potential target for antimicrobial agents. This review will summarize our current knowledge of the structure and function of histidine kinase and the development of antibiotics with a new mode of action: targeting histidine kinase promoted signal transduction and its subsequent regulation of gene expression system.  相似文献   

17.
Two-component systems are one of the most prevalent mechanisms by which bacteria sense, respond and adapt to changes in their environment. The activation of a sensor histidine kinase leads to autophosphorylation of a conserved histidine residue followed by transfer of the phosphoryl group to a cognate response regulator in an aspartate residue. The search for antibiotics that inhibit molecular targets has led to study prokaryotic two-component systems. In this study, we characterized in vitro and in vivo the BaeSR two-component system from Salmonella Typhimurium and evaluated its role in mdtA regulation in response to ciprofloxacin treatment. We demonstrated in vitro that residue histidine 250 is essential for BaeS autophosphorylation and aspartic acid 61 for BaeR transphosphorylation. By real-time PCR, we showed that mdtA activation in the presence of ciprofloxacin depends on both members of this system and that histidine 250 of BaeS and aspartic acid 61 of BaeR are needed for this. Moreover, the mdtA expression is directly regulated by binding of BaeR at the promoter region, and this interaction is enhanced when the protein is phosphorylated. In agreement, a BaeR mutant unable to phosphorylate at aspartic acid 61 presents a lower affinity with the mdtA promoter.  相似文献   

18.
Two-component signal transduction systems are the main mechanism by which bacteria sense and respond to their environment, and their membrane-located histidine protein kinases generally constitute the sensory components of these systems. Relatively little is known about their fundamental mechanisms and precise nature of the molecular signals sensed, because of the technical challenges of producing sufficient quantities of these hydrophobic membrane proteins. This study evaluated the heterologous production, purification and activities of the 16 intact membrane sensor kinases of Enterococcus faecalis. Following the cloning of the genes into expression plasmid pTTQ18His, all but one kinase was expressed successfully in Escherichia coli inner membranes. Purification of the hexa-histidine 'tagged' recombinant proteins was achieved for 13, and all but one were verified as intact. Thirteen intact kinases possessed autophosphorylation activity with no added signal when assayed in membrane vesicles or as purified proteins. Signal testing of two functionally-characterized kinases, FsrC and VicK, was successful examplifying the potential use of in vitro activity assays of intact proteins for systematic signal identification. Intact FsrC exhibited an approximately 10-fold increase in activity in response to a two-fold molar excess of synthetic GBAP pheromone, whilst glutathione, and possibly redox potential, were identified for the first time as direct modulators of VicK activity in vitro. The impact of DTT on VicK phosphorylation resulted in increased levels of phosphorylated VicR, the downstream response regulator, thereby confirming the potential of this in vitro approach for investigations of modulator effects on the entire signal transduction process of two-component systems.  相似文献   

19.
Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the former type of system, whereas it usually is in the latter. The Two-component systems include the recently described (eukaryotic) phosphorelay systems; quorum sensing systems can be based upon autoinducers of the N-acylated homoserine lactones, and on autoinducers of a peptidic nature. A single bacterial cell contains many signalling modules that primarily operate in parallel. This may give rise to neural-network behaviour. Recently, however, for both types of basic signal transfer modules, it has been demonstrated that they also can be organised in series (i.e. in a hierarchical order). Besides their hierarchical position in the signal transduction network of the cell, the spatial distribution of individual signalling modules may also be an important factor in their efficiency in signal transfer. Many challenges lie hidden in future work to understand these signal transfer processes in more detail. These are discussed here, with emphasis on the mutual interactions between different signal transfer processes. Successful contributions to this work will require rigorous mathematical modelling of the performance of signal transduction components, and -networks, as well as studies on light-sensing signal transduction systems, because of the unsurpassed time resolution obtainable in those latter systems, the opportunity to apply repeated reproducible stimuli, etc. The increased understanding of bacterial behaviour that already has resulted – and may further result – from these studies, can be used to fine-tune the beneficial activities of bacteria and/or more efficiently inhibit their deleterious ones.  相似文献   

20.
Two-component signal transduction systems allow bacteria to sense and respond rapidly to changes in their environment leading to specific gene activation or repression. These two-component systems are integral in the ability of pathogenic bacteria to mount and establish a successful infection within the host and, consequently, have been recognized as targets for new anti-microbial agents. In this paper, we define the site and mechanism of action of several previously identified inhibitors of bacterial two-component systems. We show that the most potent inhibitors target the carboxyl-terminal catalytic domain of the sensor kinase and exert their affect by causing structural alterations of the kinase leading to aggregation. Recognition of this phenomenon has important implications for the development of novel inhibitors of two-component systems and should facilitate the rapid identification and elimination of compounds with nonspecific affects from medicinal chemistry drug discovery programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号