首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malcom JW 《PloS one》2011,6(4):e14747
The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the variance in population persistence times. When the rate of environmental change is high, the relationship between network size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time. However, when the rate of environmental change is very slow, the relationship between network size and heritability disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature, and as we are able to determine the genetic basis of ecologically-relevant quantitative traits.  相似文献   

2.
Life-history traits such as longevity and fecundity often show low heritability. This is usually interpreted in terms of Fisher's fundamental theorem to mean that populations are near evolutionary equilibrium and genetic variance in total fitness is low. We develop the causal relationship between metric traits and life-history traits to show that a life-history trait is expected to have a low heritability whether or not the population is at equilibrium. This is because it is subject to all the environmental variation in the metric traits that affect it plus additional environmental variation. There is no simple prediction regarding levels of additive genetic variance in life-history traits, which may be high at equilibrium. Several other patterns in the inheritance of life-history traits are readily predicted from the causal model. These include the strength of genetic correlations between life-history traits, levels of nonadditive genetic variance, and the inevitability of genotype-environment interaction.  相似文献   

3.
Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h2=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.  相似文献   

4.
Sommer S  Pearman PB 《Genetica》2003,119(1):1-10
We estimated genetic and maternal variance components of larval life history characters in alpine populations of Rana temporaria (the common frog) using a full-sib/half-sib breeding design. We studied trait plasticity by raising tadpoles at 14 or 20°C in the laboratory. Larval period and metamorphic mass were greater at 14°C. Larval period did not differ between populations, but high elevation metamorphs were larger than low elevation metamorphs. Significant additive variation for larval period was detected in the low altitude population. No significant additive variation was detected for mass at metamorphosis (MM), which instead displayed significant maternal effects. Plasticity in metamorphic mass of froglets was greater in the high altitude population. The plastic response of larval period to temperature did not differ between the populations. Evolution of metamorphic mass is likely constrained by lack of additive genetic variation. In contrast, significant heritability for larval period suggests this trait may evolve in response to environmental change. These results differ from other studies on R. temporaria, suggesting that populations of this broadly distributed species present substantial geographic variation in the genetic architecture and plasticity of tadpole life history traits.  相似文献   

5.
Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life‐history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115–0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.  相似文献   

6.
Population genetic studies have found evidence for dramatic population growth in recent human history. It is unclear how this recent population growth, combined with the effects of negative natural selection, has affected patterns of deleterious variation, as well as the number, frequency, and effect sizes of mutations that contribute risk to complex traits. Because researchers are performing exome sequencing studies aimed at uncovering the role of low-frequency variants in the risk of complex traits, this topic is of critical importance. Here I use simulations under population genetic models where a proportion of the heritability of the trait is accounted for by mutations in a subset of the exome. I show that recent population growth increases the proportion of nonsynonymous variants segregating in the population, but does not affect the genetic load relative to a population that did not expand. Under a model where a mutation''s effect on a trait is correlated with its effect on fitness, rare variants explain a greater portion of the additive genetic variance of the trait in a population that has recently expanded than in a population that did not recently expand. Further, when using a single-marker test, for a given false-positive rate and sample size, recent population growth decreases the expected number of significant associations with the trait relative to the number detected in a population that did not expand. However, in a model where there is no correlation between a mutation''s effect on fitness and the effect on the trait, common variants account for much of the additive genetic variance, regardless of demography. Moreover, here demography does not affect the number of significant associations detected. These findings suggest recent population history may be an important factor influencing the power of association tests and in accounting for the missing heritability of certain complex traits.  相似文献   

7.
Genetic covariation among multiple traits will bias the direction of evolution. Although a trait's phenotypic context is crucial for understanding evolutionary constraints, the evolutionary potential of one (focal) trait, rather than the whole phenotype, is often of interest. The extent to which a focal trait can evolve independently depends on how much of the genetic variance in that trait is unique. Here, we present a hypothesis‐testing framework for estimating the genetic variance in a focal trait that is independent of variance in other traits. We illustrate our analytical approach using two Drosophila bunnanda trait sets: a contact pheromone system comprised of cuticular hydrocarbons (CHCs), and wing shape, characterized by relative warps of vein position coordinates. Only 9% of the additive genetic variation in CHCs was trait specific, suggesting individual traits are unlikely to evolve independently. In contrast, most (72%) of the additive genetic variance in wing shape was trait specific, suggesting relative warp representations of wing shape could evolve independently. The identification of genetic variance in focal traits that is independent of other traits provides a way of studying the evolvability of individual traits within the broader context of the multivariate phenotype.  相似文献   

8.
Wing dimorphism appears in general to be determined either by a single locus, 2 allele system in which brachyptery is dominant, or by the additive action of numerous loci. In the latter case studies indicate that the heritability is typically quite large. It is generally postulated that wing dimorphism is under strong selection: why then is genetic variation not eroded? In this paper I consider three possible explanations. First, genetic variation may not be exposed to selection because environmental heterogeneity effectively makes heritability zero. Because wing dimorphisms are known to evolve it seems unlikely that this is the primary factor. Second, directional selection on a threshold trait may push the population almost to monomorphism but erodes genetic variance at a very slow rate. This mechanism cannot preserve variation but makes it possible for other factors to more easily maintain variability. Finally, I demonstrate that in a heterogeneous environment spatio-temporal variation in fitness will itself maintain a genetic polymorphism for wing dimorphism.  相似文献   

9.
Rice SH 《Genetics》2004,166(1):513-526
Statistical associations between phenotypic traits often result from shared developmental processes and include both covariation between the trait values and more complex associations between higher moments of the joint distribution of traits. In this article, an analytical technique for calculating the covariance between traits is presented on the basis of (1). the distribution of underlying genetic and environmental variation that jointly influences the traits and (2). the mechanics of how these underlying factors influence the development of each trait. It is shown that epistasis can produce patterns of covariation between traits that are not seen in additive models. Applying this approach to a trait in parents and the same trait in their offspring allows us to study the consequences of epistasis for the evolution of additive genetic variance and heritability. This analysis is then extended to the study of more complicated associations between traits. It is shown that even traits that are not correlated may exhibit developmental associations that influence their joint evolution.  相似文献   

10.
Breeding programs to conserve diversity are predicated on the assumption that genetic variation in adaptively important traits will be lost in parallel to the loss of variation at neutral loci. To test this assumption, we monitored quantitative traits across 18 generations of Peromyscus leucopus mice propagated with protocols that mirror breeding programs for threatened species. Ears, hind feet, and tails became shorter, but changes were reversible by outcrossing and therefore were due to accumulated inbreeding. Heritability of ear length decreased, because of an increase in phenotypic variance rather than the expected decrease in additive genetic variance. Additive genetic variance in hind foot length increased. This trait initially had low heritability but large dominance or common environmental variance contributing to resemblance among full-sibs. The increase in the additive component indicates that there was conversion of interaction variances to additive variance. For no trait did additive genetic variation decrease significantly across generations. These findings indicate that the restructuring of genetic variance that occurs with genetic drift and novel selection in captivity can prevent or delay the loss of phenotypic and heritable variation, providing variation on which selection can act to adapt populations to captivity and perhaps later to readapt to more natural habitats after release. Therefore, the importance of minimizing loss of gene diversity from conservation breeding programs for threatened wildlife species might lie in preventing immediate reduction in individual fitness due to inbreeding and protecting allelic diversity for long-term evolutionary change, more so than in protecting variation in quantitative traits for rapid re-adaptation to wild environments.  相似文献   

11.
Fecundity is usually considered as a trait closely connected to fitness and is expected to exhibit substantial nonadditive genetic variation and inbreeding depression. However, two independent experiments, using populations of different geographical origin, indicate that early fecundity in Drosophila melanogaster behaves as a typical additive trait of low heritability. The first experiment involved artificial selection in inbred and non-inbred lines, all of them started from a common base population previously maintained in the laboratory for about 35 generations. The realized heritability estimate was 0.151 +/- 0.075 and the inbreeding depression was very small and nonsignificant (0.09 +/- 0.09% of the non-inbred mean per 1% increase in inbreeding coefficient). With inbreeding, the observed decrease in the within-line additive genetic variance and the corresponding increase of the between-line variance were very close to their expected values for pure additive gene action. This result is at odds with previous studies showing inbreeding depression and, therefore, directional dominance for the same trait and species. All experiments, however, used laboratory populations, and it is possible that the original genetic architecture of the trait in nature was subsequently altered by the joint action of random drift and adaptation to captivity. Thus, we carried out a second experiment, involving inbreeding without artificial selection in a population recently collected from the wild. In this case we obtained, again, a maximum-likelihood heritability estimate of 0.210 +/- 0.027 and very little nonsignificant inbreeding depression (0.06 +/- 0.12%). The results suggest that, for fitness-component traits, low levels of additive genetic variance are not necessarily associated with large inbreeding depression or high levels of nonadditive genetic variance.  相似文献   

12.
性状遗传力与QTL方差对标记辅助选择效果的影响   总被引:3,自引:0,他引:3  
鲁绍雄  吴常信  连林生 《遗传学报》2003,30(11):989-995
在采用动物模型标记辅助最佳线性无偏预测方法对个体育种值进行估计的基础上,模拟了在一个闭锁群体内连续对单个性状选择10个世代的情形,并系统地比较了性状遗传力和QTL方差对标记辅助选择所获得的遗传进展、QTL增效基因频率和群体近交系数变化的影响。结果表明:在对高遗传力和QTL方差较小的性状实施标记辅助选择时,可望获得更大的遗传进展;遗传力越高,QTL方差越大,则QTL增效基因频率的上升速度越快;遗传力较高时,群体近交系数上升的速度较为缓慢,而QTL方差对群体近交系数上升速度的影响则不甚明显。结合前人关于标记辅助选择相对效率的研究结果,可以认为:当选择性状的遗传力和QTL方差为中等水平时,标记辅助选择可望获得理想的效果。  相似文献   

13.
Consistently with the prediction that selection should deplete additive genetic variance ( VA ) in fitness, traits closely associated to fitness have been shown to exhibit low heritabilities ( h 2= VA /( VA + VR )). However, empirical data from the wild indicate that this is in fact due to increased residual variance ( VR ), rather than due to decreased additive genetic variance, but the studies in this topic are still rare. We investigated relationships between trait heritabilities, additive genetic variances, and traits' contribution to lifetime reproductive success (≈fitness) in a red-billed gull ( Larus novaehollandiae ) population making use of animal model analyses as applied to 15 female and 13 male traits. We found that the traits closely associated with fitness tended to have lower heritabilities than traits less closely associated with fitness. However, in contrast with the results of earlier studies in the wild, the low heritability of the fitness-related traits was not only due to their high residual variance, but also due to their low additive genetic variance. Permanent environment effects—integrating environmental effects experienced in early life as well as nonadditive genetic effects—on many traits were large, but unrelated to traits' importance for fitness.  相似文献   

14.
Rapid evolution may be common in human-dominated landscapes where environmental changes are severe. We used phenotypic selection analyses and a marker-based method to estimate genetic variances and covariances to predict the potential response to selection in populations of a long-lived cycad recently exposed to drastic environmental changes. Patterns of selection in adult fecundity showed that different traits were under directional selection in subpopulations from native-undisturbed habitats and the novel degraded-forest habitat. Plants from a native-habitat subpopulation tend to maximize fitness through larger leaf area or smaller specific leaf area (SLA). In contrast, larger leaf production increased fitness in a degraded-habitat subpopulation, and canopy openness appears to be a major agent of selection for this trait. Leaf production and SLA showed significant additive genetic variance and no genetic trade-offs with examined traits, suggesting that these traits can respond to selection. Directional selection coefficients and heritability values were large, therefore significant phenotypic changes between subpopulations in few generations are possible. These results suggest that recent environmental change can result in strong directional selection in subpopulations of this cycad, and that these subpopulations have the potential to diverge at the genetic level in leaf traits after anthropogenic habitat degradation.  相似文献   

15.
Body size is an important determinant of fitness in many organisms. While size will typically change over the lifetime of an individual, heritable components of phenotypic variance may also show ontogenetic variation. We estimated genetic (additive and maternal) and environmental covariance structures for a size trait (June weight) measured over the first 5 years of life in a natural population of bighorn sheep Ovis canadensis. We also assessed the utility of random regression models for estimating these structures. Additive genetic variance was found for June weight, with heritability increasing over ontogeny because of declining environmental variance. This pattern, mirrored at the phenotypic level, likely reflects viability selection acting on early size traits. Maternal genetic effects were significant at ages 0 and 1, having important evolutionary implications for early weight, but declined with age being negligible by age 2. Strong positive genetic correlations between age-specific traits suggest that selection on June weight at any age will likely induce positively correlated responses across ontogeny. Random regression modeling yielded similar results to traditional methods. However, by facilitating more efficient data use where phenotypic sampling is incomplete, random regression should allow better estimation of genetic (co)variances for size and growth traits in natural populations.  相似文献   

16.
The observation that traits closely related to fitness ("fitness traits") have lower heritabilities than traits more distantly associated with fitness has traditionally been framed in terms of Fisher's fundamental theorem of natural selection-fitness traits are expected to have low levels of additive genetic variance due to rapid fixation of alleles conferring highest fitness. Subsequent treatments have challenged this view by pointing out that high environmental and nonadditive genetic contributions to phenotypic variation may also explain the low heritability of fitness traits. Analysis of a large data set from the collared flycatcher Ficedula albicollis confirmed a previous finding that traits closely associated with fitness tend to have lower heritability. However, analysis of coefficients of additive genetic variation (CVA) revealed that traits closely associated with fitness had higher levels of additive genetic variation (VA) than traits more distantly associated with fitness. Hence, the negative relationship between a trait's association with fitness and its heritability was not due to lower levels of VA in fitness traits but was due to their higher residual variance. However, whether the high residual variance was mainly due to higher levels of environmental variance or due to higher levels of nonadditive genetic variance remains a challenge to be addressed by further studies. Our results are consistent with earlier suggestions that fitness-related traits may have more complex genetic architecture than traits more distantly associated with fitness.  相似文献   

17.
The evolutionary potential in the timing of recruitment and reproduction may be crucial for the ability of populations to buffer against environmental changes, allowing them to avoid unfavourable breeding conditions. The evolution of a trait in a local population is determined by its heritability and selection. In the present study, we performed pedigree‐based quantitative genetic analyses for two life‐history traits (recruiting age and laying date) using population data of the storm petrel over an 18‐year period in two adjacent breeding colonies (only 150 m apart) that share the same environmental conditions. In both traits, natal colony effect was the main source of the phenotypic variation among individuals, and cohort variance for recruitment age and additive genetic variance for laying date were natal colony‐specific. We found significant heritability only in laying date and, more specifically, only in birds born in one of the colonies. The difference in genetic variance between the colonies was statistically significant. Interestingly, selection on earlier breeding birds was detected only in the colony in which heritable variation in laying date was found. Therefore, local evolvability for a life‐history trait may vary within a unexpectedly small spatial scale, through the diversifying natural selection and insulating gene flow. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 439–446.  相似文献   

18.
Describing and quantifying animal personality is now an integral part of behavioural studies because individually distinctive behaviours have ecological and evolutionary consequences. Yet, to fully understand how personality traits may respond to selection, one must understand the underlying heritability and genetic correlations between traits. Previous studies have reported a moderate degree of heritability of personality traits, but few of these studies have either been conducted in the wild or estimated the genetic correlations between personality traits. Estimating the additive genetic variance and covariance in the wild is crucial to understand the evolutionary potential of behavioural traits. Enhanced environmental variation could reduce heritability and genetic correlations, thus leading to different evolutionary predictions. We estimated the additive genetic variance and covariance of docility in the trap, sociability (mirror image stimulation), and exploration and activity in two different contexts (open‐field and mirror image simulation experiments) in a wild population of yellow‐bellied marmots (Marmota flaviventris). We estimated both heritability of behaviours and of personality traits and found nonzero additive genetic variance in these traits. We also found nonzero maternal, permanent environment and year effects. Finally, we found four phenotypic correlations between traits, and one positive genetic correlation between activity in the open‐field test and sociability. We also found permanent environment correlations between activity in both tests and docility and exploration in the MIS test. This is one of a handful of studies to adopt a quantitative genetic approach to explain variation in personality traits in the wild and, thus, provides important insights into the potential variance available for selection.  相似文献   

19.
Body mass (BM) and resting metabolic rates (RMR) are two inexorably linked traits strongly related to mammalian life histories. Yet, there have been no studies attempting to estimate heritable variation and covariation of BM and RMR in natural populations. We used a marker‐based approach to construct a pedigree and then the ‘animal model’ to estimate narrow sense heritability (h2) of these traits in a free‐living population of weasels Mustela nivalis—a small carnivore characterised by a wide range of BM and extremely high RMR. The most important factors affecting BM of weasels were sex and habitat type, whereas RMR was significantly affected only by seasonal variation of this trait. All environmental factors had only small effect on estimates of additive genetic variance of both BM and RMR. The amount of additive genetic variance associated with BM and estimates of heritability were high and significant in males (h2 = 0.61), but low and not significant in females (h2 = 0.32), probably due to small sample size for the latter sex. The results from the two‐trait model revealed significant phenotypic (rP = 0.62) and genetic correlation (rA = 0.89) between BM and whole body RMR. The estimate of heritability of whole body RMR (0.54) and BM corrected RMR (0.45) were lower than estimates of heritability for BM. Both phenotypic and genetic correlations between BM corrected RMR and BM had negative signals (rP = ?0.42 and rA = ?0.58). Our results indicate that total energy expenditures of individuals can quickly evolve through concerted changes in BM and RMR.  相似文献   

20.
Population response to selection depends on the presence of additive genetic variance for traits under selection. When a population enters an alien environment, environment-induced changes in the expression of genetic variance may occur. These could have large effects on the response to selection. To investigate the environment-dependence of genetic variance, we conducted a reciprocal transplant experiment between two ecotypically differentiated populations of Impatiens pallida using the progeny of a standard mating design. The floodplain site was characterized by high water availability, moderate temperatures, and continuous dense stands of Impatiens. The hillside site was drier, with larger temperature extremes and supported only scattered patches of Impatiens with significantly lower seed production and earlier mortality. Estimates of heritability were low for each of the 13 traits measured in each population and site (range from 0–28%). Additive genetic variance for life-history traits tended to be larger than for morphological traits, but genetic variance in fitness was estimated to be not significantly different from zero in all cases. Significant heritability was detected in both populations for one trait (date of first cleistogamous flower) known to be closely related to fitness on the hillside. In general, heritability was reduced for populations when grown in the hillside site relative to the floodplain site, suggesting that stress acts to reduce the expression of genetic variance and the potential to respond to selection there. Consistent reductions in heritability associated with more stressful environments suggest that populations invading such sites may undergo little adaptive differentiation and be more prone to local extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号