首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Purpose

FKBP51, (FKBP5), is a negative regulator of Akt. Variability in FKBP5 expression level is a major factor contributing to variation in response to chemotherapeutic agents including gemcitabine, a first line treatment for pancreatic cancer. Genetic variation in FKBP5 could influence its function and, ultimately, treatment response of pancreatic cancer.

Experimental Design

We set out to comprehensively study the role of genetic variation in FKBP5 identified by Next Generation DNA resequencing on response to gemcitabine treatment of pancreatic cancer by utilizing both tumor and germline DNA samples from 43 pancreatic cancer patients, including 19 paired normal-tumor samples. Next, genotype-phenotype association studies were performed with overall survival as well as with FKBP5 gene expression in tumor using the same samples in which resequencing had been performed, followed by functional genomics studies.

Results

In-depth resequencing identified 404 FKBP5 single nucleotide polymorphisms (SNPs) in normal and tumor DNA. SNPs with the strongest associations with survival or FKBP5 expression were subjected to functional genomic study. Electromobility shift assay showed that the rs73748206 “A(T)” SNP altered DNA-protein binding patterns, consistent with significantly increased reporter gene activity, possibly through its increased binding to Glucocorticoid Receptor (GR). The effect of rs73748206 was confirmed on the basis of its association with FKBP5 expression by affecting the binding to GR in lymphoblastoid cell lines derived from the same patients for whom DNA was used for resequencing.

Conclusion

This comprehensive FKBP5 resequencing study provides insights into the role of genetic variation in variation of gemcitabine response.  相似文献   

3.

Background

Glucocorticoids (GCs) are widely used to treat sudden sensorineural hearing loss (SSNHL) and significantly improve hearing. However, GC insensitivity has been observed in some patients of SSNHL.

Objective

To study the correlation between GR expression in peripheral blood mononuclear cells (PBMCs) and in the cochlea of guinea pigs at mRNA and protein levels.

Methods

One group of guinea pigs received dexamethasone (10 mg/kg/day) intraperitoneally for 7 consecutive days (dexamethasone group), and another group of guinea pigs received normal saline (control group). Real time PCR and Western blotting were used to detect the expression of GR mRNA and GR protein in PBMCs and the cochleae.

Results

The GR mRNA and GR protein were detected in both PBMCs and the cochlear tissue of guinea pigs. GR mRNA and GR protein levels in PBMCs were positively correlated with those in the cochlea. The expression of GR mRNA and GR protein was significantly increased in the dexamethasone group compared to the control group.

Conclusions

Levels of GR mRNA and GR protein in the PBMCs were positively correlated with those in the cochlea of guinea pigs. Systemic dexamethasone treatment can significantly up-regulate GR expression in PBMCs and in the cochlea. Measurement of the GR level in PBMCs could be used as an indicator of GR level in the cochlea.  相似文献   

4.
5.

Background

Airway eosinophilia is a predictor of steroid responsiveness in steroid-naïve asthma. However, the relationship between airway eosinophilia and the expression of FK506-binding protein 51 (FKBP51), a glucocorticoid receptor co-chaperone that plays a role in steroid insensitivity in asthma, remains unknown.

Objective

To evaluate the relationship between eosinophilic inflammation and FKBP51 expression in sputum cells in asthma.

Methods

The FKBP51 mRNA levels in sputum cells from steroid-naïve patients with asthma (n = 31) and stable asthmatic patients on inhaled corticosteroid (ICS) (n = 28) were cross-sectionally examined using real-time PCR. Associations between FKBP51 levels and clinical indices were analyzed.

Results

In steroid-naïve patients, the FKBP51 levels were negatively correlated with eosinophil proportions in blood (r = −0.52) and sputum (r = −0.57), and exhaled nitric oxide levels (r = −0.42) (all p<0.05). No such associations were observed in patients on ICS. In steroid-naïve patients, improvement in forced expiratory volume in one second after ICS initiation was correlated with baseline eosinophil proportions in blood (r = 0.74) and sputum (r = 0.76) and negatively correlated with FKBP51 levels (r = −0.73) (all p<0.0001) (n = 20). Lastly, the FKBP51 levels were the lowest in steroid-naïve asthmatic patients, followed by mild to moderate persistent asthmatic patients on ICS, and the highest in severe persistent asthmatic patients on ICS (p<0.0001).

Conclusions

Lower FKBP51 expression in sputum cells may reflect eosinophilic inflammation and glucocorticoid responsiveness in steroid-naïve asthmatic patients.  相似文献   

6.
Wang N  Geng L  Zhang S  He B  Wang J 《PloS one》2012,7(3):e34010

Background

To explore the molecular basis of the different ultrasonic patterns of the human endometrium, and the molecular marker basis of local injury.

Methodology/Principal Findings

The mRNA and protein expression of FKBP52, progesterone receptor A (PRA), progesterone receptor B (PRB), and HB-EGF were detected in different patterns of the endometrium by real-time RTPCR and immunohistochemistry. There were differences in the mRNA and protein expression of FKBP52, PRB, and HB-EGF in the triple line (Pattern A) and homogeneous (Pattern C) endometrium in the window of implantation. No difference was detected in PRA expression. After local injury, the mRNA expression of HB-EGF significantly increased. In contrast, there was no difference in the mRNA expression of FKBP52, PRB, or PRA. The protein expression of FKBP52, PRB, and HB-EGF increased after local injury. There was no difference in the PRA expression after local injury.

Conclusions

PRB, FKBP52, and HB-EGF may be the molecular basis for the classification of the ultrasonic patterns. HB-EGF may be the molecular basis of local injury. Ultrasonic evaluation on the day of ovulation can be effective in predicting the outcome of implantation.  相似文献   

7.
The FK506 binding protein 51 or FKBP5 has been implicated in the regulation of glucocorticoid receptor (GR) sensitivity, and genetic variants in this gene have been associated with mood and anxiety disorders. GR resistance and associated stress hormone dysregulation are among the most robust biological findings in major depression, the extent of which may be moderated by FKBP5 polymorphisms. FKBP5 mRNA expression in peripheral blood cells (baseline and following in vivo GR stimulation with 1.5 mg dexamethasone p.o.) was analyzed together with plasma cortisol, ACTH, dexamethasone levels and the FKBP5 polymorphism rs1360780 in 68 depressed patients and 87 healthy controls. We observed a significant (P = 0.02) interaction between disease status and FKBP5 risk allele carrier status (minor allele T) on GR‐stimulated FKBP5 mRNA expression. Patients carrying the risk T allele, but not the CC genotype, showed a reduced induction of FKBP5 mRNA. This FKBP5 polymorphism by disease status interaction was paralleled by the extent of plasma cortisol and ACTH suppression following dexamethasone administration, with a reduced suppression only observed in depressed patients carrying the T allele. Only depressed patients carrying the FKBP5 rs1360780 risk allele showed significant GR resistance compared with healthy controls, as measured by dexamethasone‐induced FKBP5 mRNA induction in peripheral blood cells and suppression of plasma cortisol and ACTH concentrations. This finding suggests that endocrine alterations in depressed patients are determined by genetic variants and may allow identification of specific subgroups .  相似文献   

8.
9.
10.
11.
12.

Background

Reports indicate that PDLIM5 is involved in mood disorders. The PDLIM5 (PDZ and LIM domain 5) gene has been genetically associated with mood disorders; it’s expression is upregulated in the postmortem brains of patients with bipolar disorder and downregulated in the peripheral lymphocytes of patients with major depression. Acute and chronic methamphetamine (METH) administration may model mania and the evolution of mania into psychotic mania or schizophrenia-like behavioral changes, respectively.

Methods

To address whether the downregulation of PDLIM5 protects against manic symptoms and cause susceptibility to depressive symptoms, we evaluated the effects of reduced Pdlim5 levels on acute and chronic METH-induced locomotor hyperactivity, prepulse inhibition, and forced swimming by using Pdlim5 hetero knockout (KO) mice.

Results

The homozygous KO of Pdlim5 is embryonic lethal. The effects of METH administration on locomotor hyperactivity and the impairment of prepulse inhibition were lower in Pdlim5 hetero KO mice than in wild-type mice. The transient inhibition of PDLIM5 (achieved by blocking the translocation of protein kinase C epsilon before the METH challenge) had a similar effect on behavior. Pdlim5 hetero KO mice showed increased immobility time in the forced swimming test, which was diminished after the chronic administration of imipramine. Chronic METH treatment increased, whereas chronic haloperidol treatment decreased, Pdlim5 mRNA levels in the prefrontal cortex. Imipramine increased Pdlim5 mRNA levels in the hippocampus.

Conclusion

These findings are partially compatible with reported observations in humans, indicating that PDLIM5 is involved in psychiatric disorders, including mood disorders.  相似文献   

13.

Purpose

To investigate the effects of icariin, a major constituent of flavonoids isolated from the herb Epimedium, on cigarette smoke (CS) induced inflammatory responses in vivo and in vitro.

Methods

In vivo, BALB/c mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with icariin (25, 50 and 100 mg/kg) or dexamethasone (1 mg/kg). In vitro, A549 cells were incubated with icariin (10, 50 and 100 µM) followed by treatments with CSE (2.5%).

Results

We found that icariin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9 in both the serum and BALF of CS-exposed mice and decreasing production of TNF-α and IL-8 in the supernatant of CSE-exposed A549 cells. Icariin also showed properties in inhibiting the phosphorylation of NF-κB p65 protein and blocking the degradation of IΚB-α protein. Further studies revealed that icariin administration markedly restore CS-reduced GR protein and mRNA expression, which might subsequently contribute to the attenuation of CS-induced respiratory inflammatory response.

Conclusion

Together these results suggest that icariin has anti-inflammatory effects in cigarette smoke induced inflammatory models in vivo and in vitro, possibly achieved by suppressing NF-κB activation and modulating GR protein expression.  相似文献   

14.
15.
16.

Introduction

Genetic and disease-related factors give rise to a wide spectrum of glucocorticoid (GC) sensitivity in rheumatoid arthritis (RA). In clinical practice, GC treatment is not adapted to these differences in GC sensitivity. In vitro assessment of GC sensitivity before the start of therapy could allow more individualized GC therapy. The aim of the study was to investigate the association between in vitro and in vivo GC sensitivity in RA.

Methods

Thirty-eight early and 37 established RA patients were prospectively studied. In vitro GC sensitivity was assessed with dexamethasone-induced effects on interleukin-2 (IL-2) and glucocorticoid-induced leucine zipper (GILZ) messenger RNA expression in peripheral blood mononuclear cells (PBMCs). A whole-cell dexamethasone-binding assay was used to measure number and affinity (1/KD) of glucocorticoid receptors (GRs).In vivo GC sensitivity was determined by measuring the disease activity score (DAS) and health assessment questionnaire disability index (HAQ-DI) score before and after 2 weeks of standardized GC treatment.

Results

GR number was positively correlated with improvement in DAS. IL-2-EC50 and GILZ-EC50 values both had weak near-significant correlations with clinical improvement in DAS in intramuscularly treated patients only. HAQ responders had lower GILZ-EC50 values and higher GR number and KD.

Conclusions

Baseline cellular in vitro glucocorticoid sensitivity is modestly associated with in vivo improvement in DAS and HAQ-DI score after GC bridging therapy in RA. Further studies are needed to evaluate whether in vitro GC sensitivity may support the development of tailor-made GC therapy in RA.  相似文献   

17.
Shi FT  Cheung AP  Huang HF  Leung PC 《PloS one》2011,6(8):e22866

Background

We have demonstrated that growth differentiation factor 9 (GDF9) enhances activin A-induced inhibin β B-subunit mRNA levels in human granulosa-lutein (hGL) cells by regulating receptors and key intracellular components of the activin signaling pathway. However, we could not exclude its effects on follistatin (FST) and follistatin-like 3 (FSTL3), well recognized extracellular inhibitors of activin A.

Methodology

hGL cells from women undergoing in vitro fertilization (IVF) treatment were cultured with and without siRNA transfection of FST, FSTL3 or GDF9 and then treated with GDF9, activin A, FST, FSTL3 or combinations. FST, FSTL3 and inhibin β B-subunit mRNA, and FST, FSTL3 and inhibin B protein levels were assessed with real-time RT-PCR and ELISA, respectively. Data were log transformed before ANOVA followed by Tukey''s test.

Principal Findings

GDF9 suppressed basal FST and FSTL3 mRNA and protein levels in a time- and dose-dependent manner and inhibited activin A-induced FST and FSTL3 mRNA and protein expression, effects attenuated by BMPR2 extracellular domain (BMPR2 ECD), a GDF9 antagonist. After GDF9 siRNA transfection, basal and activin A-induced FST and FSTL3 mRNA and protein levels increased, but changes were reversed by adding GDF9. Reduced endogenous FST or FSTL3 expression with corresponding siRNA transfection augmented activin A-induced inhibin β B-subunit mRNA levels as well as inhibin B levels (P values all <0.05). Furthermore, the enhancing effects of GDF9 in activin A-induced inhibin β B-subunit mRNA and inhibin B production were attenuated by adding FST.

Conclusion

GDF9 decreases basal and activin A-induced FST and FSTL3 expression, and this explains, in part, its enhancing effects on activin A-induced inhibin β B-subunit mRNA expression and inhibin B production in hGL cells.  相似文献   

18.
19.
Kobayashi Y  Mercado N  Barnes PJ  Ito K 《PloS one》2011,6(12):e27627

Background

Corticosteroid insensitivity is a major barrier of treatment for some chronic inflammatory diseases, such as severe asthma, but the molecular mechanism of the insensitivity has not been fully elucidated. The object of this study is to investigate the role of protein phosphate 2A (PP2A), a serine/threonine phosphatase, on corticosteroid sensitivity in severe asthma.

Methodology/Principal Findings

Corticosteroid sensitivity was determined by the dexamethasone ability to inhibit TNFα-induced IL-8 or LPS-induced TNFα production. PP2A expression, glucocorticoid receptor (GR) nuclear translocation defined as the nuclear/cytoplasmic GR ratio and phosphorylation of GR-Ser226, c-Jun N-terminal kinase 1 (JNK1) and PP2A were analysed by Western-blotting. Phosphatase activity was measured by fluorescence-based assay. Okadaic acid (OA), a PP2A inhibitor, reduced corticosteroid sensitivity with reduced GR nuclear translocation and increased GR phosphorylation in U937 monocytic cells. PP2A knockdown by RNA interference showed similar effects. IL-2/IL-4 treatment to U937 reduced corticosteroid sensitivity, and PP2A expression/activity. In peripheral blood mononuclear cells (PBMCs) from severe asthma, the PP2A expression and activity were significantly reduced with concomitant enhancement of PP2AC-Tyr307 phosphorylation compared with those in healthy volunteers. As the results, GR-Ser226 and JNK1 phosphorylation were increased. The expression and activity of PP2A were negatively correlated with phosphorylation levels of GR-Ser226. Furthermore, co-immunoprecipitation assay in U937 cells revealed that PP2A associated with GR and JNK1 and IL-2/IL-4 exposure caused dissociation of each molecule. Lastly, PP2A overexpression increased corticosteroid sensitivity in U937 cells.

Conclusions/Significance

PP2A regulates GR nuclear translocation and corticosteroid sensitivity possibly by dephosphorylation of GR-Ser226 via dephosphorylation of upstream JNK1. This novel mechanism will provide new insight for the development of new therapy for severe asthma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号