首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.  相似文献   

2.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders affecting humans and animals. At present, it is not possible to recognize individuals incubating the disease before the clinical symptoms appear. We investigated the effectiveness of the "Protein Misfolding Cyclic Amplification" (PMCA) technology to detect the protease-resistance disease-associated prion protein (PrP(res)) in pre-symptomatic stages. PMCA allowed detection of PrP(res) in the brain of pre-symptomatic hamsters, enabling a clear identification of infected animals as early as two weeks after inoculation. Furthermore, PMCA was able to amplify minute quantities of PrP(res) from a variety of experimental and natural TSEs. Finally, PMCA allowed the demonstration of PrP(res) in an experimentally infected cow 32 month post-inoculation, that did not show clinical signs and was negative by standard Western blot analysis. Our findings indicate that PMCA may be useful for the development of an ultra-sensitive diagnostic test to minimize the risk of further propagation of TSEs.  相似文献   

3.
Prions are the unconventional infectious agents responsible for transmissible spongiform encephalopathies, which appear to be composed mainly or exclusively of the misfolded prion protein (PrPSc). Prion replication involves the conversion of the normal prion protein (PrPC) into the misfolded isoform, catalyzed by tiny quantities of PrPSc present in the infectious material. We have recently developed the protein misfolding cyclic amplification (PMCA) technology to sustain the autocatalytic replication of infectious prions in vitro. Here we show that PMCA enables the specific and reproducible amplification of exceptionally minute quantities of PrPSc. Indeed, after seven rounds of PMCA, we were able to generate large amounts of PrPSc starting from a 1x10(-12) dilution of scrapie hamster brain, which contains the equivalent of approximately 26 molecules of protein monomers. According to recent data, this quantity is similar to the minimum number of molecules present in a single particle of infectious PrPSc, indicating that PMCA may enable detection of as little as one oligomeric PrPSc infectious particle. Interestingly, the in vitro generated PrPSc was infectious when injected in wild-type hamsters, producing a disease identical to the one generated by inoculation of the brain infectious material. The unprecedented amplification efficiency of PMCA leads to a several billion-fold increase of sensitivity for PrPSc detection as compared with standard tests used to screen prion-infected cattle and at least 4000 times more sensitivity than the animal bioassay. Therefore, PMCA offers great promise for the development of highly sensitive, specific, and early diagnosis of transmissible spongiform encephalopathy and to further understand the molecular basis of prion propagation.  相似文献   

4.
The in vitro amplification of prions by serial protein misfolding cyclic amplification has been shown to detect PrPSc to levels at least as sensitive as rodent bioassay but in a fraction of the time. Bovine spongiform encephalopathy is a zoonotic prion disease in cattle and has been shown to occur in 3 distinct forms, classical BSE (C-BSE) and 2 atypical BSE forms (L-BSE and H-BSE). Atypical forms are usually detected in asymptomatic, older cattle and are suggested to be spontaneous forms of the disease. Here, we show the development of a serial protein misfolding cyclic amplification method for the detection of H-BSE. The assay could detect PrPSc from 3 distinct experimental isolates of H-BSE, could detect PrPSc in as little as 1×10?12 g of brain material and was highly specific. Additionally, the product of serial protein misfolding cyclic amplification at all dilutions of seed analyzed could be readily distinguished from L-BSE, which did not amplify, and C-BSE, which had PrPSc with distinct protease K-resistance and protease K-resistant PrPSc molecular weights.  相似文献   

5.
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrPC) is required for prion replication, the influence of PrPC abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrPC was overexpressed. Tg(MoPrP)4112 mice overexpressing PrPC supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrPC-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrPC is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrPSc amplification by using concentrated PrPC source and expands the use of this methodology.  相似文献   

6.
Prions are proteinaceous infectious agents responsible for the transmission of prion diseases. The lack of a procedure for cultivating prions in the laboratory has been a major limitation to the study of the unorthodox nature of this infectious agent and the molecular mechanism by which the normal prion protein (PrP(C)) is converted into the abnormal isoform (PrP(Sc)). Protein misfolding cyclic amplification (PMCA), described in detail in this protocol, is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA involves incubating materials containing minute amounts of infectious prions with an excess of PrP(C) and boosting the conversion by cycles of sonication to fragment the converting units, thereby leading to accelerated prion replication. PMCA is able to detect the equivalent of a single molecule of infectious PrP(Sc) and propagate prions that maintain high infectivity, strain properties and species specificity. A single PMCA assay takes little more than 3 d to replicate a large amount of prions, which could take years in an in vivo situation. Since its invention 10 years ago, PMCA has helped to answer fundamental questions about this intriguing infectious agent and has been broadly applied in research areas that include the food industry, blood bank safety and human and veterinary disease diagnosis.  相似文献   

7.
An abnormal isoform of the prion protein, associated with transmissible spongiform encephalopathies, retains infectivity even after undergoing routine sterilization processes. We found that a formulation of iron ions combined with hydrogen peroxide effectively reduced infectivity and the level of abnormal isoforms of the prion protein in scrapie-infected brain homogenates. Therefore, the Fenton reaction has potential for prion decontamination.  相似文献   

8.
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.  相似文献   

9.
A point mutation in Prnp that converts tyrosine (Y) at position 145 into a stop codon leading to a truncated prion molecule as found in an inherited transmissible spongiform encephalopathy (TSE), Gertsmann-Sträussler-Scheincker syndrome, suggests that the N-terminus of the molecule (spanning amino acids 23–144) likely plays a critical role in prion misfolding as well as in protein-protein interactions. We hypothesized that Y145Stop molecule represents an unstable part of the prion protein that is prone to spontaneous misfolding. Utilizing protein misfolding cyclic amplification (PMCA) we show that the recombinant polypeptide corresponding to the Y145Stop of sheep and deer PRNP can be in vitro converted to PK-resistant PrPSc in presence or absence of preexisting prions. In contrast, recombinant protein full-length PrPC did not show a propensity for spontaneous conformational conversion to protease resistant isoforms. Further, we show that seeded or spontaneously misfolded Y145Stop molecules can efficiently convert purified mammalian PrPC into protease resistant isoforms. These results establish that the N-terminus of PrPC molecule corresponding to residues 23–144 plays a role in seeding and misfolding of mammalian prions.Key words: prion protein, prions, recombinant prion protein, Y145Stop, protein misfolding cyclic amplification  相似文献   

10.
《朊病毒》2013,7(1):81-88
A point mutation in Prnp that converts tyrosine (Y) at position 145 into a stop codon leading to a truncated prion molecule as found in an inherited transmissible spongiform encephalopathy (TSE), Gertsmann-Sträussler-Scheincker syndrome, suggests that the N-terminus of the molecule (spanning amino acids 23–144) likely plays a critical role in prion misfolding as well as in protein-protein interactions. We hypothesized that Y145Stop molecule represents an unstable part of the prion protein that is prone to spontaneous misfolding. Utilizing protein misfolding cyclic amplification (PMCA) we show that the recombinant polypeptide corresponding to the Y145Stop of sheep and deer PRNP can be in vitro converted to PK-resistant PrPSc in presence or absence of preexisting prions. In contrast, recombinant protein full-length PrPC did not show a propensity for spontaneous conformational conversion to protease resistant isoforms. Further, we show that seeded or spontaneously misfolded Y145Stop molecules can efficiently convert purified mammalian PrPC into protease resistant isoforms. These results establish that the N-terminus of PrPC molecule corresponding to residues 23–144 plays a role in seeding and misfolding of mammalian prions.  相似文献   

11.
The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β‐state oligomers. Herein, we demonstrate that β‐state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full‐length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP‐induced neurotoxicity. We have characterized protein misfolding cyclic amplification‐induced monomer‐to‐oligomer conversion of PrP from three species using western blotting, circular dichroism, size‐exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β‐oligomers are toxic to primary mouse cortical neurons independent of the presence of PrPC in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer‐induced apoptosis via regulation of Bcl‐2, Bax, and caspase‐3 in both wild‐type and PrP?/? cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain.

  相似文献   


12.
In this study, the efficacy of disinfectants in reducing the partially protease-resistant isoform of prion protein was evaluated by a multi-round protein misfolding cyclic amplification (PMCA) technique. Hamster brains infected with scrapie-derived strain 263K were homogenized, treated under inactivating or mock conditions, and subjected to multi-round PMCA. Four sets of serial 10-fold dilutions of mock-treated samples were analyzed. Although considerable variability was observed in the signal patterns, between the second and sixth rounds the number of the PMCA round correlated in a linear fashion with the mean dilution factor of mock-treated, infected brains, corresponding to a log reduction factor (LRF) of 3.8-7.3 log. No signals were observed in the PMCA products amplified from normal hamster brain homogenates. The mean numbers of rounds at the first appearance of the signal for 1 M and 2 M NaOH-treated samples were 4.33 and 4, respectively. Using the linear regression line as the titration curve, the LRFs of these disinfectants were found to be 6.1 and 5.8 log, respectively; these values were not significantly different. The mean number of rounds for the alkaline cleaner and sodium dodecyl sulfate were 9 and 10.33, respectively, and were outside the range of both the linear regression line and evaluation limit. The disinfectants were considered very effective because their LRFs were ≥7.3 log. These estimations were concordant with previous bioassay-based reports. Thus, the evaluation limit seems to be valuable in some applications of multi-round PMCA, such as disinfectant assessment and process validation.  相似文献   

13.
Abnormal isoform of prion proteins (PrP(Sc)), which are infectious agents associated with prion diseases, retain infectivity after undergoing routine sterilization processes. A sensitive method to detect the infectivity is a bioassay, and it has been used for assessing prion inactivation. However, the result is obtained after several hundred days. Here, protein misfolding cyclic amplification (PMCA) in which PrP(Sc) can be amplified in vitro was applied for assessing prion inactivation by dry heating and autoclaving. Scrapie-infected hamster brains were inactivated under various conditions, and residual infectivity and PrP(Sc) were detected by the bioassay and PMCA, respectively. The PMCA results were in good agreement with those of the bioassay. In samples autoclaved at temperatures below 150 degrees C, while infected mice died in the bioassay, protease-resistant PrP (PrP(res)) signals were detected in the second or third round of PMCA. Three rounds of PMCA require only 6 days, which means that the PMCA method is much faster than the bioassay.  相似文献   

14.
The susceptibility of sheep to scrapie is influenced mainly by the prion protein polymorphisms A136V, R154H, and Q171R/H. Here we analyzed the ability of protein misfolding cyclic amplification (PMCA) to model the genetic susceptibility of sheep to scrapie. For this purpose, we studied the efficiency of brain homogenates from sheep with different PrP genotypes to support PrPSc amplification by PMCA using an ARQ/ARQ scrapie inoculum. The results were then compared with those obtained in vivo using the same sheep breed, genotypes, and scrapie inoculum. Genotypes associated with susceptibility (ARQ/ARQ, ARQ/AHQ, and AHQ/ARH) were able to sustain PrPSc amplification in PMCA reactions, while genotypes associated with resistance to scrapie (ARQ/ARR and ARR/ARR) were unable to support the in vitro conversion. The incubation times of the experimental infection were then compared with the in vitro amplification factors. Linear regression analysis showed that the efficiency of in vitro PrPSc amplification of the different genotypes was indeed inversely proportional to their incubation times. Finally, the rare ARQK176/ARQK176 genotype, for which no in vivo data are available, was studied by PMCA. No amplification was obtained, suggesting ARQK176/ARQK176 as an additional genotype associated with resistance, at least to the isolate tested. Our results indicate a direct correlation between the ability of different PrP genotypes to undergo PrPC-to-PrPSc conversion by PMCA and their in vivo susceptibility and point to PMCA as an alternative to transmission studies and a potential tool to test the susceptibility of numerous sheep PrP genotypes to a variety of prion sources.  相似文献   

15.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting captive and free-ranging cervids. Currently, tests for CWD in live animals involve relatively invasive procedures to collect lymphoid tissue biopsies and examine them for CWD-associated, protease-resistant cervid prion protein (PrP(CWD)) detected by immunohistochemistry (IHC). We adapted an ultrasensitive prion detection system, protein misfolding cyclic amplification (PMCA), to detect PrP(CWD) in Rocky Mountain elk (Cervus elaphus nelsoni) feces. Our PMCA reproducibly detected a 1.2 × 10(7) dilution of PrP(CWD) (a 10% infected brain homogenate diluted 1.2 × 10(6)-fold into 10% fecal homogenates), equivalent to approximately 100 pg of PrP(CWD)/g of feces. We developed a semiquantitative scoring system based on the first PMCA round at which PrP(CWD) was detected and fit a nonlinear regression curve to our serial dilutions to correlate PMCA scores with known PrP(CWD) concentrations. We used this PMCA scoring system to detect PrP(CWD) and estimate its concentration in feces from free-ranging elk from Rocky Mountain National Park, Colorado. We compared our results to PrP(CWD) IHC of rectoanal mucosa-associated lymphoid tissue and obex from the same animals. The PMCA successfully detected PrP(CWD) in feces from elk that were positive by IHC, with estimated prion loads from 100 to 5,000 pg PrP(CWD)/g of feces. These data show for the first time PrP(CWD) in feces from naturally exposed free-ranging elk and demonstrate the potential of PMCA as a new, noninvasive CWD diagnostic tool to complement IHC.  相似文献   

16.
17.
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.  相似文献   

18.
Leila M. Luheshi 《FEBS letters》2009,583(16):2581-2586
Protein misfolding and aggregation are pathognomic for a number of the most common age-related degenerative diseases. Great progress has been made in studying protein aggregation in the test tube and also in replicating protein aggregation in vertebrate animal models of these diseases. However, we argue here that the development and effective integration of emerging techniques such as the methods of nanoscience and the use of invertebrate models are now providing powerful new opportunities to advance our current understanding of the fundamental origins of these disorders.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号