首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing spread of plasmid-borne ampC-ampR operons is of considerable medical importance, since the AmpC beta-lactamases they encode confer high level resistance to many third generation cephalosporins. Induction of AmpC beta-lactamase from endogenous or plasmid-borne ampC-ampR operons is mediated by a catabolic inducer molecule, 1,6-anhydro-N-acetylmuramic acid (MurNAc) tripeptide, an intermediate of the cell wall recycling pathway derived from the peptidoglycan. Here we describe a strategy for attenuating the antibiotic resistance associated with the ampC-ampR operon by blocking the formation of the inducer molecule using small molecule inhibitors of NagZ, the glycoside hydrolase catalyzing the formation of this inducer molecule. The structure of the NagZ-inhibitor complex provides insight into the molecular basis for inhibition and enables the development of inhibitors with 100-fold selectivity for NagZ over functionally related human enzymes. These PUGNAc-derived inhibitors reduce the minimal inhibitory concentration (MIC) values for several clinically relevant cephalosporins in both wild-type and AmpC-hyperproducing strains lacking functional AmpD.  相似文献   

2.
3.
Molecular modification is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N′-(benzofuroxan-5-yl)methylene]benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological profile. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF3 substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6–13.1 μg/mL, and a Clog P value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates.  相似文献   

4.
AIMS: To screen five phytochemicals isolated from Erythrina poeppigiana (Leguminosae) for antimicrobial activity against both Candida albicans and methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS: Roots of E. poeppigiana were macerated with acetone and the chloroform-soluble fraction of the residue was subjected to repeated silica gel column chromatography using various eluting solvents. Structures of the isolated compounds were determined by extensive spectroscopic studies. Each compound was dissolved in dimethyl sulphoxide and added to agar plates (final concentration: 1.56-100 microg ml(-1)) and minimum inhibitory concentrations (MICs) against C. albicans and MRSA were determined. Spectral data indicated the presence of three different types of phytochemicals; isoflavonoids (erypoegin A, demethylmedicarpin and sandwicensin), alpha-methyldeoxybenzoin (angolensin) and cinnamylphenol (erypostyrene). While all compounds showed anti-MRSA activity in this concentration range, isoflavonoids and alpha-methyldeoxybenzoin failed to inhibit the growth of C. albicans. Erypostyrene (E-1-[2-hydroxy-4-methoxy-5-(gamma,gamma-dimethylallyl)benzyl]-2-(4-hydroxyphenyl)ethylene) exhibited not only the highest anti-MRSA activity (MIC value of 6.25 microg ml(-1)) but also anti-candidal potency (MIC value of 50 microg ml(-1)). The compound reduced viable cell numbers of C. albicans and MRSA by approximately 1 of 2000 and 1 of 1000 after 1 h incubation at each MIC, respectively. CONCLUSIONS: A new cinnamylphenol, erypostyrene, possessed anti-candidal and anti-MRSA activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Erypostyrene could be a leading candidate for development of antimicrobial agents with anti-candidal and anti-MRSA activity.  相似文献   

5.
6.
Abstract

In vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis biofilm producers from blood cultures of patients with prosthetic hip infections was evaluated. The Minimum Inhibitory Concentration (MIC) for AP7121 was determined and the bactericidal activity of AP7121 (MICx1, MICx4) against planktonic cells was studied at 4, 8 and 24?h. The biofilms formed were incubated with AP7121 (MICx1, MICx4) for 1 and 24?h. The anti-adhesion effect of an AP7121-treated inert surface over the highest MIC isolate was studied with scanning electron microscopy (SEM). The bactericidal activity of AP7121 against all the planktonic staphylococcal cells was observed at 4?h at both peptide concentrations. Dose-dependent anti-biofilm activity was detected. AP7121 (MICx4) showed bactericidal activity at 24?h in all isolates. SEM confirmed prevention of biofilm formation. This research showed the in vitro anti-biofilm activity of AP7121 against MRSA and S. epidermidis and the prevention of biofilm formation by them on an abiotic surface.  相似文献   

7.
Antimicrobial peptides such as human β-defensins (hBDs) and cathelicidins are critical for protection against infection and can be induced by activation of TLRs, a pathway that also activates cyclooxygenase(Cox)-2 expression. We hypothesized that Cox-2 is induced by TLR activation and is necessary for optimal AMP production, and that inhibitors of Cox-2 may therefore inhibit antimicrobial action. Normal human keratinocytes (NHEKs) stimulated with a TLR2/6 ligand, macrophage-activating lipopeptide-2, or a TLR3 ligand, polyinosinic-polycytidylic acid, increased Cox-2 mRNA and protein and increased PGE(2), a product of Cox-2. Treatment with a Cox-2 selective inhibitor (SC-58125) or Cox-2 small interfering RNA attenuated hBD2 and hBD3 production in NHEKs when stimulated with macrophage-activating lipopeptide-2, polyinosinic-polycytidylic acid, or UVB (15 mJ/cm(2)), but it did not attenuate vitamin D3-induced cathelicidin. SC-58125 also inhibited TLR-dependent NF-κB activation. Conversely, treatment with Cox-derived prostanoids PGD(2) or 15-deoxy-Δ(12,14)-PGJ(2) induced hBD3 or hBD2 and hBD3, respectively. The functional significance of these observations was seen in NHEKs that showed reduced anti-staphylococcal activity when treated with a Cox-2 inhibitor. These findings demonstrate a critical role for Cox-2 in hBD production and suggest that the use of Cox-2 inhibitors may adversely influence the risk for bacterial infection.  相似文献   

8.
A small molecule (1835F03) that inhibits Staphylococcus aureus wall teichoic acid biosynthesis, a proposed antibiotic target, has been discovered. Rapid, parallel, solution-phase synthesis was employed to generate a focused library of analogs, providing detailed information about structure–activity relationships and leading to the identification of targocil, a potent antibiotic.  相似文献   

9.
Yu Y  Yi ZB  Liang YZ 《FEBS letters》2007,581(22):4179-4183
In this investigation, the antibacterial modes of action of Radix Tinosporae, its major single components, and nine antibiotics with different targets or modes-of-action on Staphylococcus aureus were studied. Metabolic profiles of cultures treated with different medicines were acquired by HPLC/ESI-MS. After HPLC-MS data pretreatment, those profiles acquired were reduced into several MS vectors. Then statistical processing by principal components analysis was carried out upon those vectors, two conclusions could be drawn: (1) the antibacterial mode of action of Radix Tinosporae is similar to that of rifampicin and norfloxacin, which act on nucleic acid; (2) its active components playing main antimicrobial roles on Staphylococcus aureus might be alkaloids, such as palmatine and jatrorrhizine.  相似文献   

10.
Cell wall turnover was examined in parent and mutant strains of Staphylococcus aureus. Peptidoglycan and teichoic acid were observed to undergo turnover in the wild-type strain during exponential growth; however, the rate of turnover did not decrease when the growth rate slowed, as the culture entered stationary phase. Isolated native cell walls and crude soluble autolytic enzyme were prepared from cells harvested during exponential and postexponential phases of growth. Native cell walls from both phases of growth autolyzed in buffer at identical rates; similarily, crude soluble enzyme from both preparations degraded radioactive cell walls at the same rate. Therefore, the activity of the autolysin in both exponential and postexponential cells was similar. The autolysis of whole cells of a mutant tar-1 was enhanced by 1.0 M NaCl. When 1.0 M NaCl was present under growing conditions, the rate of cell wall turnover was greatly increased. The presence of chloramphenicol, which inhibits whole-cell autolysis, also inhibited turnover. Analysis of the cell wall material recovered from spent medium revealed products consistent with the known mode of action of the endogenous autolysin. It is concluded that cell wall turnover in S. aureus is independent of the stage of culture growth but is dependent instead on the activity of the autolysin.  相似文献   

11.
The in vitro antimicrobial activities of pannarin, a depsidone isolated from lichens, collected in several Southern regions of Chile (including Antarctica), was evaluated alone and in combination with five therapeutically available antibiotics, using checkerboard microdilution assay against methicillin-resistant clinical isolates strains of Staphylococcus aureus. MIC(90), MIC(50), as well as MBC(90) and MBC(50), were evaluated. A moderate synergistic action was observed in combination with gentamicin, whilst antagonism was observed in combination with levofloxacin. All combinations with erythromycin were indifferent, whilst variability was observed for clindamycin and oxacillin combinations. Data from checkerboard assay were analysed and interpreted using the fractional inhibitory concentration index and the response surface approach using the ΔE model. Discrepancies were found between both methods for some combinations. In order to asses cellular lysis after exposure to pannarin, cell membrane permeability assay was performed. The treatment with pannarin produces bactericidal activity without significant calcein release, consistent with lack of lysis or even significant structural damage to the cytoplasmic membrane. Furthermore, pannarin shows low hemolytic activity and moderate cytotoxic effect on peripheral blood mononuclear cells. These findings suggest that the natural compound pannarin might be a good candidate for the individualization of novel templates for the development of new antimicrobial agents or combinations of drugs for chemotherapy.  相似文献   

12.
13.
Aims: This study investigates the antimicrobial activity and mode of action of novel carbohydrate fatty acid (CFA) derivatives against Staphylococcus aureus and methicillin‐resistant Staph. aureus (MRSA). Methods and Results: Minimum inhibitory concentrations (MICs) and the effect of CFA derivatives on lag phase were determined using a broth microdilution method. Lauric acid carbohydrate esters and corresponding ether analogues showed the greatest antimicrobial activity with MIC values between 0·04 and 0·16 mmol l?1. Leakage studies at 260 nm following exposure to CFA derivatives at 4× MIC showed a significant increase in membrane permeability for all compounds, after c. 15 min exposure except for the lauric beta ether CFA derivative. Further assessment using both BacLight and luminescence ATP assays confirmed that an increase in membrane permeability and reduced metabolic activity was associated with CFA treatment. Conclusions: All strains were significantly inhibited by the novel compounds studied, and efficacy was related to specific structural features. Cell‐membrane permeabilization was associated with CFA treatment and may account for at least a component of the mode of action of these compounds. Significance and Impact of the Study: This study reports the antimicrobial action of CFA compounds against a range of Staph. aureus and MRSA strains, and provides insights into their mode of action.  相似文献   

14.
AIMS: To analyse population minimum inhibitory concentrations (MICs) data from clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa for changes over a 10-year period and to look for correlations between the antimicrobials tested. METHODS AND RESULTS: Data from the MIC study of 256 clinical isolates of Staph. aureus [169 methicillin-sensitive Staph. aureus (MSSA), 87 methicillin-resistant Staph. aureus (MRSA)] and 111 clinical isolates of Ps. aeruginosa against eight antimicrobial biocides and several clinically relevant antibiotics was analysed using anova, Spearman-Rho correlation and principal component analysis. Comparisons suggest that alterations in the mean susceptibility of Staph. aureus to antimicrobial biocides have occurred between 1989 and 2000, but that these changes were mirrored in MSSA and MRSA suggests that methicillin resistance has little to do with these changes. Between 1989 and 2000 a sub-population of MRSA has acquired a higher resistance to biocides, but this has not altered the antibiotic susceptibility of that group. In both Staph. aureus and Ps. aeruginosa several correlations (both positive and negative) between antibiotics and antimicrobial biocides were found. CONCLUSIONS: From the analyses of these clinical isolates it is very difficult to support a hypothesis that increased biocide resistance is a cause of increased antibiotic resistance either in Staph. aureus or in Ps. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY: The observation of negative correlations between antibiotics and biocides may be a useful reason for the continued use of biocides promoting hygiene in the hospital environment.  相似文献   

15.
This study was conducted in an effort to evaluate the antimicrobial activity and antibiotic-resistant gene regulation from Saliva miltiorrhiza Bunge on methicillin-resistant Staphylococcus aureus (MRSA). A variety of solvent fractions and methanol extracts of S. miltiorrhiza Bunge were tested in order to determine its antimicrobial activities against S. aureus and MRSA. As a result, the hexane fraction of S. miltiorrhiza Bunge evidenced the highest levels of antimicrobial activity against S. aureus and MRSA. The MICs of the hexane fraction against various MRSA specimens were 64相似文献   

16.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

17.
Phenylpiperidine selective serotonin reuptake inhibitors (PSSRIs) block the function of selected multidrug efflux pumps of Staphylococcus aureus. In this study PSSRI-based piperidine derivatives were prepared, evaluated for inhibition of two multidrug resistance (MDR)-conferring efflux pump systems, and tested for potentiation of antimicrobial activity of antibacterial efflux pump substrates. It is demonstrated that the 4-phenyl moiety of PSSRI-based efflux pump inhibitors (EPIs) is not an absolute structural requirement for inhibiting the NorA and MepA MDR efflux pumps. Potency of efflux inhibition is maintained or enhanced by replacing the aryloxymethyl substituent at position-3 of PSSRIs with arylalkene and arylthioether moieties. Novel 3-aryl piperidine EPIs that significantly increase substrate antibiotic activity against strains of S. aureus expressing NorA and MepA are described.  相似文献   

18.
AIM: To determine daily dynamics of antibacterial resistance as well as antilysozyme and coagulase activity of S. aureus strains. MATERIALS AND METHODS: On an example of clinical strains of S.aureus isolated from patients with surgical infections daily dynamics of biological characteristics of staphylococci was studied. After 12 hours of incubation strains were tested for coagulase activity by standard method (test tube method), antilysozyme activity by photometric method, and antibacterial resistance by method of serial dilutions in agar. Tests were repeated each 3-hours during a day. RESULTS: Variation of levels of studied biological characteristics of staphylococci during a day was revealed. Structures of coagulase and antilysozyme circadian rhythms had some differences in different S. aureus strains. Alongside with it, similarity in temporal expression of such biological characteristics of staphylococci as antibacterial resistance and antilysozyme activity was noted. CONCLUSION: Obtained data open prospect to use biorhythmological approach in study of biological characteristics of microorganisms during evaluation of their mechanisms of adaptation to changing environmental conditions. Chronobiological approach allows to reveal periods of maximal expression of S. aureus characteristics that could be used for increasing of effectiveness of antibacterial treatment by the choice of optimal time for administration of antibiotic.  相似文献   

19.
Antibacterial compounds with new mechanisms of action are needed for effective therapy against drug-resistant pathogens in the clinic and in biodefense. Screens for inhibitors of the essential replicative helicases of Bacillus anthracis and Staphylococcus aureus yielded 18 confirmed hits (IC50 ? 25 μM). Several (5 of 18) of the inhibitors were also shown to inhibit DNA replication in permeabilized polA-deficient B. anthracis cells. One of the most potent inhibitors also displayed antibacterial activity (MIC ~5 μg/ml against a range of Gram-positive species including bacilli and staphylococci) together with good selectivity for bacterial versus mammalian cells (CC50/MIC > 16) suitable for further optimization. This compound shares the bicyclic ring of the clinically proven aminocoumarin scaffold, but is not a gyrase inhibitor. It exhibits a mixed mode of helicase inhibition including a component of competitive inhibition with the DNA substrate (Ki = 8 μM) and is rapidly bactericidal at 4 × MIC.  相似文献   

20.
Bacterial primase is essential for DNA replication in Gram-positive and Gram-negative bacteria. It is also structurally distinct from eukaryotic primases, and therefore an attractive, but under-explored, target for therapeutic intervention. We applied virtual screening to discover primase inhibitors, and subsequently several commercially available analogs of these initial hits showed potent primase inhibition and in vitro antibacterial activity. This work provides a 3D pharmacophore for primase ligands, SAR trends, and leads that can be further optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号