首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms.  相似文献   

5.
Cytoplasmic viral RNA and DNA are recognized by RIG-I-like receptors and DNA sensors that include DAI, IFI16, DDX41, and cGAS. The RNA and DNA sensors evoke innate immune responses through the IPS-1 and STING adaptors. IPS-1 and STING activate TBK1 kinase. TBK1 is phosphorylated in its activation loop, leading to IRF3/7 activation and Type I interferon (IFN) production. IPS-1 and STING localize to the mitochondria and endoplasmic reticulum, respectively, whereas it is unclear where phosphorylated TBK1 is localized in response to cytoplasmic viral DNA. Here, we investigated phospho-TBK1 (p-TBK1) subcellular localization using a p-TBK1-specific antibody. Stimulation with vertebrate DNA by transfection increased p-TBK1 levels. Interestingly, stimulation-induced p-TBK1 exhibited mitochondrial localization in HeLa and HepG2 cells and colocalized with mitochondrial IPS-1 and MFN-1. Hepatitis B virus DNA stimulation or herpes simplex virus type-1 infection also induced p-TBK1 mitochondrial localization in HeLa cells, indicating that cytoplasmic viral DNA induces p-TBK1 mitochondrial localization in HeLa cells. In contrast, p-TBK1 did not show mitochondrial localization in RAW264.7, L929, or T-23 cells, and most of p-TBK1 colocalized with STING in response to cytoplasmic DNA in those mammalian cells, indicating cell type-specific localization of p-TBK1 in response to cytoplasmic viral DNA. A previous knockout study showed that mouse IPS-1 was dispensable for Type I IFN production in response to cytoplasmic DNA. However, we found that knockdown of IPS-1 markedly reduced p-TBK1 levels in HeLa cells. Taken together, our data elucidated the cell type-specific subcellular localization of p-TBK1 and a cell type-specific role of IPS-1 in TBK1 activation in response to cytoplasmic viral DNA.  相似文献   

6.
7.
Adequate response to low oxygen levels (hypoxia) by hypoxia inducible factor (HIF) is essential for normal development and physiology, but this pathway may also contribute to pathological processes like tumor angiogenesis. Here we show that hypoxia is an inducer of Notch signaling. Hypoxic conditions lead to induction of the Notch ligand Dll4 and the Notch target genes Hey1 and Hey2 in various cell lines. Promoter analysis revealed that Hey1, Hey2 and Dll4 are induced by HIF-1alpha and Notch activation. Hypoxia-induced Notch signaling may also determine endothelial identity. Endothelial progenitor cells (EPCs) contain high amounts of COUP-TFII, a regulator of vein identity, while levels of the arterial regulators Dll4 and Hey2 are low. Hypoxia-mediated upregulation of Dll4 and Hey2 leads to repression of COUP-TFII in eEPCs. Finally, we show that Hey factors are capable of repressing HIF-1alpha-induced gene expression, suggesting a negative feedback loop to prevent excessive hypoxic gene induction. Thus, reduced oxygen levels lead to activation of the Dll4-Notch-Hey2 signaling cascade and subsequent repression of COUP-TFII in endothelial progenitor cells. We propose that this is an important step in the developmental regulation of arterial cell fate decision.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Infection of AGMK or CV-1 cells by the early simian virus 40 mutant tsA58 at the permissive temperature (32 degrees C) followed by a shift to the nonpermissive temperature (41 degrees C) caused a substantial decrease in the levels of late viral RNA in the cytoplasm of AGMK cells but not CV-1 cells. At the translational level, this depression of late viral RNA levels was reflected by a decrease in late viral protein synthesis. Thus, in AGMK cells, an early region gene product (presumably large T-antigen) appeared to be continuously required for efficient expression of the late viral genes. In contrast, late simian virus 40 gene expression, once it is initiated in CV-1 cells, continued efficiently regardless of the tsA mutation. The difference in expression of the late simian virus 40 genes in these tsA mutant-infected monkey kidney cell lines may reflect a difference in host cell proteins which regulate viral gene expression in conjunction with early viral proteins.  相似文献   

15.
16.
17.
Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV) infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3) and cytotoxic granule-associated RNA binding protein (TIA1), associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a "danger signal" leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection.  相似文献   

18.
Dry age-related macular degeneration (AMD), accounting for approximately 90% of AMD cases, is characterized by photoreceptor death, retinal pigment epithelium (RPE) dysfunction and, ultimately, geographic atrophy – the localized death of RPE leading to loss of the center of the visual field. The pathological etiology of AMD is multifactorial, but innate immune signaling and inflammation are involved in early stages of the disease. Although numerous single-nucleotide polymorphisms in innate immune genes are associated with dry AMD, no single gene appears to cause dry AMD.Here, we hypothesized that activation of TLR3 potentiates expression of TLR3 itself and the NFκB-p65 (RelA) subunit as part of pro-inflammatory RPE signaling. Furthermore, we hypothesized that TLR3 activation can ‘prime’ cells to future RelA stimulation, leading to enhanced, persistent RelA expression and signaling following a second TLR3 activation. We used the human RPE-derived cell line ARPE-19 as a model system for RPE signaling and measured NFκB expression and activity in response to TLR3 stimulation with its ligand, polyinosinic:polycytidylic acid (pI:C).Activation of TLR3 with pI:C led to increased TLR3 and RelA expression that was sustained for at least 24 h. Cells exposed for a second time to pI:C after an initial pI:C exposure displayed elevated RelA expression and RelA nuclear translocation above the level generated by individual primary or secondary exposures alone. Such an elevated response could also not be generated by a single application of higher concentrations of the agonist pI:C. Additionally, we determined the mechanism for TLR3 mediated TLR3 and RelA expression by using inhibitors of canonical TLR3-TBK1-IKKε and JAK-STAT signaling pathways.These data suggest that initial exposure of ARPE-19 cells to pI:C upregulates TLR3 and RelA signaling, leading to potentiated and persistent RelA signaling potentially generated by a positive feedback loop that may cause exacerbated inflammation in AMD. Furthermore, inhibition of JAK-STAT signaling may be a possible therapeutic treatment to prevent induction of TLR3 expression subsequent to pI:C exposure. Our results identify possible therapeutic targets to reduce the TLR3 positive feedback loop and subsequent overproduction of pro-inflammatory cytokines in RPE cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号