首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-Adenosyl-L-methionine (SAM) is one of the major methyl donors in all living organisms. The exogenous treatment with SAM leads to increased actinorhodin production in Streptomyces coelicolor A3(2). In this study, mutants from different stages of the AfsK-AfsR signal transduction cascade were used to test the possible target of SAM. SAM had no significant effect on actinorhodin production in afsK, afsR, afsS, or actII-open reading frame 4 (ORF4) mutant. This confirms that afsK plays a critical role in delivering the signal generated by exogenous SAM. The afsK-pHJL-KN mutant did not respond to SAM, suggesting the involvement of the C-terminal of AfsK in binding with SAM. SAM increased the in vitro autophosphorylation of kinase AfsK in a dose-dependent manner, and also abolished the effect of decreased actinorhodin production by a Ser/Thr kinase inhibitor, K252a. In sum, our results suggest that SAM activates actinorhodin biosynthesis in S. coelicolor M130 by increasing the phosphorylation of protein kinase AfsK.  相似文献   

2.
3.
S-Adenosyl-L-methionine (SAM) is one of the major methyl donors in all living organisms. The exogenous treatment with SAM leads to increased actinorhodin production in Streptomyces coelicolor A3(2). In this study, mutants from different stages of the AfsK-AfsR signal transduction cascade were used to test the possible target of SAM. SAM had no significant effect on actinorhodin production in afsK, afsR, afsS, or actII-open reading frame 4 (ORF4) mutant. This confirms that afsK plays a critical role in delivering the signal generated by exogenous SAM. The afsK-pHJL-KN mutant did not respond to SAM, suggesting the involvement of the C-terminal of AfsK in binding with SAM. SAM increased the in vitro autophosphorylation of kinase AfsK in a dose-dependent manner, and also abolished the effect of decreased actinorhodin production by a Ser/Thr kinase inhibitor, K252a. In sum, our results suggest that SAM activates actinorhodin biosynthesis in S. coelicolor M130 by increasing the phosphorylation of protein kinase AfsK.  相似文献   

4.
5.
The roles of O-methyltransferases (OMTs) in microorganisms are not well understood, and are suggested to increase antimicrobial activity. Studies on OMTs cloned from microorganisms may help elucidate their roles. Streptomyces coelicolor A3(2) produces many useful natural antibiotics such as actinorhodin. Based on sequence information from S. coelicolor A3(2) genome, it was possible to clone several methyltransferases. An OMT cloned from Streptomyces coelicolor A3(2), ScOMT1 was characterized by in vivo and in vitro assays. Of 23 compounds tested, 13 were found to serve as its substrates. Of the 13 substrates, the methylated positions of 7 compounds were determined by HPLC, NMR, and MS analyses. This OMT favored ortho-dihydroxyflavones. Among the compounds tested here, the best substrate is 6,7-dihydroxyflavone.  相似文献   

6.
7.
天蓝色链霉菌调控基因tcrA功能的初步研究   总被引:3,自引:1,他引:3  
柳金满  杨克迁 《微生物学报》2006,46(1):33-37,T0001
天蓝色链霉菌的开放阅读框SCO5433编码一个含有TPR(Tetratricopeptide repeat)结构域的调控蛋白。该基因的阻断突变株表现出孢子颜色加深和色素产量增加的表型变化。孢子颜色的加深在以葡萄糖或甘露醇为碳源的MM培养基上表现明显;色素产量的增加在以甘露醇为碳源的MM培养基和MS培养基上表现最为明显;插片培养结合光学显微镜观察并没有发现突变株在形态分化上有显著变化;这些发现预示着可能存在一个SCO5433参与的调控途径,在一定条件下,这一途径对天蓝色链霉菌次级代谢可能起着负调控作用,而与形态分化无关。  相似文献   

8.
S-Adenosylmethionine (SAM) was previously documented to activate secondary metabolism in a variety of Streptomyces spp. and to promote actinorhodin (ACT) and undecylprodigiosin (RED) in Streptomyces coelicolor. The SAM-induced proteins in S. coelicolor include several ABC transporter components (SCO5260 and SCO5477) including BldKB, the component of a well-known regulatory factor for differentiations. In order to assess the role of these ABC transporter complexes in differentiation of Streptomyces, SCO5260 and SCO5476, the first genes from the cognate complex clusters, were individually inactivated by gene replacement. Inactivation of either SCO5260 or SCO5476 led to impaired sporulation on agar medium, with the more drastic defect in the SCO5260 null mutant (ASCO5260). ASCO5260 displayed growth retardation and reduced yields of ACT and RED in liquid cultures. In addition, SAM supplementation failed in promoting the production of ACT and RED in ASCO5260. Inactivation of SCO5476 gave no significant change in growth and production of ACT and RED, but impaired the promoting effect of SAM on ACT production without interfering with the effect on RED production. The present study suggests that SAM induces several ABC transporters to modulate secondary metabolism and morphological development in S. coelicolor.  相似文献   

9.
10.
Production of the blue-pigmented antibiotic actinorhodin is greatly enhanced in Streptomyces lividans and Streptomyces coelicolor by transformation with a 2.7-kb DNA fragment from the S. coelicolor chromosome cloned on a multicopy plasmid. Southern analysis, restriction map comparisons, and map locations of the cloned genes revealed that these genes were different from other known S. coelicolor genes concerned with actinorhodin biosynthesis or its pleiotropic regulation. Computer analysis of the DNA sequence showed five putative open reading frames (ORFs), which were named ORFA, ORFB, and ORFC (transcribed in one direction) and ORFD and ORFE (transcribed in the opposite direction). Subcloning experiments revealed that ORFB together with 137 bp downstream of it is responsible for antibiotic overproduction in S. lividans. Insertion of a phi C31 prophage into ORFB by homologous recombination gave rise to a mutant phenotype in which the production of actinorhodin, undecylprodigiosin, and the calcium-dependent antibiotic (but not methylenomycin) was reduced or abolished. The nonproducing mutants were not affected in the timing or vigor or sporulation. A possible involvement of ORFA in antibiotic production in S. coelicolor is not excluded. abaA constitutes a new locus which, like the afs and abs genes previously described, pleiotropically regulates antibiotic production. DNA sequences that hybridize with the cloned DNA are present in several different Streptomyces species.  相似文献   

11.
nsdA基因是在天蓝色链霉菌中发现的抗生素合成负调控基因。以nsdA基因片段为探针,通过Southern杂交发现nsdA存在于多种链霉菌中。根据天蓝色链霉菌和阿维链霉菌的nsdA序列设计PCR引物,扩增多种链霉菌中nsdA基因并测序。发现在不同链霉菌中nsdA基因的相似性高达77%~100%。其中变铅青链霉菌与天蓝色链霉菌A3(2)的nsdA序列100%一致。变铅青链霉菌通常不合成放线紫红素,中断nsdA获得的突变菌株WQ2能够合成放线紫红素;在WQ2中重新引入野生型nsdA,又失去产抗生素能力。表明nsdA的中断可以激活变铅青链霉菌中沉默的放线紫红素生物合成基因簇的表达;nsdA的广泛存在及其序列高度保守则提示可以尝试用于这些菌种的抗生素高产育种。  相似文献   

12.
Li W  Ying X  Guo Y  Yu Z  Zhou X  Deng Z  Kieser H  Chater KF  Tao M 《Journal of bacteriology》2006,188(24):8368-8375
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene negatively affecting Streptomyces differentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.  相似文献   

13.
14.
15.
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans.  相似文献   

16.
S Horinouchi  O Hara    T Beppu 《Journal of bacteriology》1983,155(3):1238-1248
A-factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone), an autoregulating factor originally found in Streptomyces griseus, is involved in streptomycin biosynthesis and cell differentiation in this organism. A-factor production is widely distributed among actinomycetes, including Streptomyces coelicolor A3(2) and Streptomyces lividans. A chromosomal pleiotropic regulatory gene of S. coelicolor A3(2) controlling biosynthesis of A-factor and red pigments was cloned with a spontaneous A-factor-deficient strain of S. lividans HH21 and plasmid pIJ41 as a host-vector system. The restriction endonuclease KpnI-digested chromosomal fragments were ligated into the plasmid vector and introduced by transformation into the protoplasts of strain HH21. Three red transformants thus selected were found to produce A-factor and to carry a plasmid with the same molecular weight, and a 6.4-megadalton fragment was inserted in the KpnI site of pIJ41. By restriction endonuclease mapping and subcloning, a restriction fragment (1.2 megadaltons, approximately 2,000 base pairs) bearing the gene which causes concomitant production of A-factor and red pigments was determined. The red pigments were identified by thin-layer chromatography and spectroscopy to be actinorhodin and prodigiosin, both of which are the antibiotics produced by S. coelicolor A3(2). The cloned fragment was introduced into the A-factor-negative mutants (afs) of S. coelicolor A3(2) by using pIJ702 as the vector, where it complemented one of these mutations, afsB, characterized by simultaneous loss of A-factor and red pigment production. We conclude that the cloned gene pleiotropically and positively controls the biosynthesis of A-factor, actinorhodin, and prodigiosin.  相似文献   

17.
18.
19.
简要回顾了丝/苏氨酸蛋白激酶在链霉菌中的发现过程,详细介绍了链霉菌中几个研究较为深入的丝/苏氨酸蛋白激酶的功能,同时对天蓝色链霉菌Streptomyces coelicolor A3(2)和除虫霉菌Streptomyces avermitilis MA-4680中的丝/苏氨酸蛋白激酶的跨膜种类和蛋白结构域特点作了初步的生物信息学分析.  相似文献   

20.
Deletion of scbA enhances antibiotic production in Streptomyces lividans   总被引:2,自引:0,他引:2  
Antibiotic production in many streptomycetes is influenced by extracellular gamma-butyrolactone signalling molecules. In this study, the gene scbA, which had been shown previously to be involved in the synthesis of the gamma-butyrolactone SCB1 in Streptomyces coelicolor A3(2), was deleted from the chromosome of Streptomyces lividans 66. Deletion of scbA eliminated the production of the antibiotic stimulatory activity previously associated with SCB1 in S. coelicolor. When the S. lividans scbA mutant was transformed with a multi-copy plasmid carrying the gene encoding the pathway-specific activator for either actinorhodin or undecylprodigiosin biosynthesis, production of the corresponding antibiotic was elevated significantly compared to the corresponding scbA(+) strain carrying the same plasmid. Consequently, deletion of scbA may be useful in combination with other strategies to construct host strains capable of improved bioactive metabolite production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号