首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of exogenous histone H1 on estrogen receptor status of human breast cancer MCF 7 cells were investigated in presence and absence of estrogen. Exogenous histone H1 was significantly cytotoxic in a dose- and time-dependent manner. Cell cycle analysis revealed a significant increase in the percentage of cell accumulation in G0/G1 phase. In histone H1-treated cells, a significant decrease in the estrogen receptor content and an increase in the dissociation constant (KD) of ER was observed compared to control.  相似文献   

2.
Chemopreventive and cytotoxic effect of genistein against human breast cancer cell lines was investigated. Genistein inhibited cell proliferation in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) human breast carcinoma cell lines. Cytochrome P450 (CYP) 1A1-mediated ethoxyresorufin O-deethylase (EROD)activity was inhibited by genistein in a concentration-dependent manner. Genistein significantly inhibited 12-Otetradecanoylphorbol-13-acetate (TPA)-induced cyclooxygenase-2 activity and protein expression at the concentrations of 10 (p < 0.05), 25 (p < 0.05) and 50 mM (p < 0.01). In addition, ornithine decarboxylase (ODC) activity was reduced to 53.8 % of the control after 6 h treatment with 50 mM genistein in MCF-7 breast cancer cells. These results suggest that genistein could be of therapeutic value in preventing human breast cancer.  相似文献   

3.
Antiestrogen is one type of the endocrine therapeutic agents for estrogen receptor α (ERα)-positive breast cancer. Unfortunately, this treatment alone is insufficient. Here we reported a novel potential anticancer strategy by using histone deacetylase (HDAC) inhibitor to enhance the action of endocrine therapy in ERα-positive breast cancer cell. The well-described HDAC inhibitor, trichostatin A (TSA), and antiestrogen raloxifene were found to, respectively, inhibit E2-induced proliferation of MCF-7 breast cancer cell in a dose-responsive and time-dependent manner. TSA and raloxifene enhanced the antiproliferative activity of each other by promoting cell death via apoptosis and cell cycle arrest. Thus, they displayed better antiproliferative effects in combined treatment than that with either agent alone. The expression level of estrogen receptor β (ERβ) showed a marked increase after TSA or/and raloxifene treatment. Treatments with TSA or/and raloxifene resulting in the up-regulation of ERβ are in accordance with the antiproliferative effects of the two agents. Furthermore, the over-expression of ERβ by adenovirus delivery could inhibit the proliferation of MCF-7 tumor cells and drastically enhanced the antiproliferative effects of TSA and raloxifene. These results demonstrated that the interference of ERβ on the antiproliferative effects of HDAC inhibitor and antiestrogen constitutes a promising approach for breast cancer treatment.  相似文献   

4.
Abstract

Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki?=?59?µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1?µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500?µM completely inhibited growth of all cancer cells at 48?h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.  相似文献   

5.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

6.
7.
8.
9.
10.
Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen. As histone deacetylases are key regulators of Akt, we evaluated the effect of combined treatment with the histone deacetylase inhibitor PCI-24781 and tamoxifen on Akt in breast cancer cells. We demonstrate that while both histone deacetylase and estrogen receptor inhibition down regulate AKT mRNA and protein, their concerted effort results in down regulation of AKT activity with induction of cell death. Histone deacetylase inhibition exerts its effect on AKT mRNA through an estrogen receptor-dependent mechanism, primarily down regulating the most abundant isoform AKT1. Although siRNA depletion of AKT modestly induces cell death, when combined with an anti-estrogen, cytotoxicity is significantly enhanced. Thus, histone deacetylase regulation of AKT mRNA is a key mediator of this therapeutic combination and may represent a novel biomarker for predicting response to this regimen.  相似文献   

11.
Previous studies have shown that growth suppression and apoptosis of leukemic cells exposed to TGF-β1 is associated with the inhibition of ornithine decarboxylase (ODC) — the key enzyme of polyamine pathway. The aim of the present study was to evaluate the influence of 12-O-tetradecanoylphorbol 13-acetate (TPA) — a potent ODC inducer on antiproliferative and apoptotic effects of TGF-β1 in L1210 leukemic cells. Cells were incubated in 2%FCS/RPMI1640 medium, supplemented with TGF-β1 (2 ng/ml), TPA (100 ng/ml) or -difluoromethyl-ornithine (DFMO) (5 mM). Cell proliferation, apoptosis and necrosis were evaluated using [methyl-3H] thymidine, electron microscopy, electrophoresis of DNA and trypan blue exclusion. Expression and activity of ODC were determinated by RT-PCR and measurement of 14CO2 release from L-1-14C ornithine, respectively. TGF-β1 inhibited proliferation and induced apoptotic and necrotic cell death in L1210 leukemic cells. The above effects were associated with the inhibition of ODC expression and activity, measured 2 and 4 hr after TGF-β1 administration, respectively. The presence of DFMO, an irreversible inhibitor of ODC, led to apoptotic fragmentation of DNA, similar to that observed in TGF-β1-treated cultures. Administration of TPA simultaneously with TGF-β1 significantly reduced antiproliferative, apoptotic and necrotic effects of TGF-β1, and prevented its inhibitory action on ODC expression and activity. It is concluded that: down-regulation of ODC expression may be one of the early events associated with TGF-β1-evoked suppression of growth and apoptosis; ODC is involved in the mechanism of protective action of TPA on TGF-β1-related growth inhibition of L1210 leukemic cells.  相似文献   

12.
Role of ornithine decarboxylase in breast cancer   总被引:1,自引:0,他引:1  
Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration. ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial cells, and there was a positive correlation between the level of ODC mRNA and the staging of tumors. The expression of ODC correlated with cyclin D1, a cell cycle protein, in synchronized breast cancer MDA-MB-231 cells. Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression of ODC and cyclin D1, resulting in suppression of proliferation and cell cycle arrest at G0–G1 phase, and the inhibition of colony formation, an anchorage-independent growth pattern, and the migratory ability of MDA-MB-231 cells. rAd-ODC/Ex3as also markedly reduced the concentration of putrescine, but not spermidine or spermine, in MDA-MB-231 cells. The results suggested that the ODC gene might act as a prognostic factor for breast cancer and it could be a promising therapeutic target.  相似文献   

13.
14.
Recently, salidroside (p-hydroxyphenethyl-β-d-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.  相似文献   

15.
16.
为探讨ODC和AdoMetDC双反义腺病毒载体(Ad-ODC-AdoMetDCas)对食管癌Eca109细胞凋亡作用的影响,应用MTT法观察Ad-ODC-AdoMetDCas对食管癌Eca109细胞生长增殖的影响,采用Western blot和HPLC的方法分别检测腺病毒载体对食管癌Eca109细胞中ODC和AdoMetDC蛋白表达以及胞内多胺含量的抑制作用,同时应用原位末端标记(TUNEL) 法观察Ad-ODC-AdoMetDCas对食管癌Eca109细胞凋亡作用的影响, 透射电镜进一步观察细胞超微结构的改变. 实验结果显示,应用MTT法观察发现Ad-ODC-AdoMetDCas对食管癌Eca109细胞生长增殖有显著抑制作用. 以Ad-ODC- AdoMetDCas感染食管癌Eca109细胞,可明显抑制食管癌Eca109细胞中ODC和AdoMetDC基因表达. HPLC结果显示,食管癌Eca109细胞感染Ad-ODC-AdoMetDCas后,细胞内3种多胺含量都明显降低. TUNEL标记检测结果显示Ad-ODC-AdoMetDCas可明显引起食管癌Eca109细胞凋亡.透射电镜观察到典型的细胞凋亡特征(表现细胞体积缩小,核皱缩、碎裂,染色质呈块状边集等). 实验表明,ODC和AdoMetDC双反义腺病毒载体(Ad-ODC-AdoMetDCas)具有显著抑制食管癌细胞生长增殖,降低细胞多胺合成,促进细胞凋亡,为探讨食管癌基因治疗的可行性提供实验依据.  相似文献   

17.
18.
Human breast tumorigenesis is promoted by the estrogen receptor pathway, and nuclear receptor coactivators are thought to participate in this process. Here we studied whether one of these coactivators, AIB1 (amplified in breast cancer 1), was rate-limiting for hormone-dependent growth of human MCF-7 breast cancer cells. We developed MCF-7 breast cancer cell lines in which the expression of AIB1 can be modulated by regulatable ribozymes directed against AIB1 mRNA. We found that depletion of endogenous AIB1 levels reduced steroid hormone signaling via the estrogen receptor alpha or progesterone receptor beta on transiently transfected reporter templates. Down-regulation of AIB1 levels in MCF-7 cells did not affect estrogen-stimulated cell cycle progression but reduced estrogen-mediated inhibition of apoptosis and cell growth. Finally, upon reduction of endogenous AIB1 expression, estrogen-dependent colony formation in soft agar and tumor growth of MCF-7 cells in nude mice was decreased. From these findings we conclude that, despite the presence of different estrogen receptor coactivators in breast cancer cells, AIB1 exerts a rate-limiting role for hormone-dependent human breast tumor growth.  相似文献   

19.
Sodium butyrate at a concentration of 5mM causes significant hyperacetylation of the core histones in the human breast cancer cell line MCF-7. Histone hyperacetylation was achieved in rapidly-growing cells at 40% confluency after 24 hours in 5mM sodium butyrate. More nearly confluent cells did not reach as high a level of histone hyperacetylation. Upon assaying the estrogen receptors, both cytosolic and KCl-extractable nuclear, we found that butyrate treatment had lowered the estrogen receptor levels in both compartments. To our knowledge this is the first report of an effect of sodium butyrate on estrogen receptor levels.  相似文献   

20.
Breast cancer is the second most common cancer worldwide after lung cancer with the vast majority of early stage breast cancers being hormone-dependent. One of the major therapeutic advances in the clinical treatment of breast cancer has been the introduction of selective estrogen receptor modulators (SERMs). We describe the design and synthesis of novel SERM type ligands based on the 2-arylindole scaffold to selectively target the estrogen receptor in hormone dependent breast cancers. Some of these novel compounds are designed as bisindole type structures, while others are conjugated to a cytotoxic agent based on combretastatin A4 (CA4) which is a potent inhibitor of tubulin polymerisation. The indole compounds synthesised within this project such as 31 and 86 demonstrate estrogen receptor (ER) binding and strong antiproliferative activity in the ER positive MCF-7 breast cancer cell line with IC50 values of 2.71 μM and 1.86 μM respectively. These active compounds induce apoptotic activity in MCF-7 cells with minimal effects on normal peripheral blood cells. Their strong anti-cancer effect is likely mediated by the presence of two ER binding ligands for 31 and an ER binding ligand combined with a cytotoxic agent for 86.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号