首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teratocarcinoma differentiation has been studied using sera specific for each of the five intermediate filament (IF) classes. These antibodies distinguish cells of epithelial, muscle, neural, astrocytic, and mesenchymal origin. In embryoid bodies, derived from embryo transplants and obtained in the ascitic fluid by transplantation of teratocarcinoma, the cells of the inner cellular mass did not express any of these intermediate filament types while the outer cells expressed cytokeratin. Intermediate filament expression in the embryoid body thus appears analogous to that in the blastocyst and differs from that in embryonal carcinoma (EC) lines. Twelve EC lines have now been shown to express vimentin although in some EC lines not all cells express vimentin. Other established permanent differentiated cell lines, derived from EC lines in vitro or from tumors in vivo, have been characterized with respect to the type of IF they contain. The distribution of different IF types has been examined in EC cells induced to differentiate by addition of retinoic acid. The proportion of cells expressing each type of intermediate filament appears to depend on the EC cell line used, on the inducing agent, and on the length of treatment. Thus, for instance, F9 cells express cytokeratin, PCC3 derivatives express vimentin, many 1009 derivatives express either glial fibrillar acidic protein (GFA) or neurofilament proteins. Overall the results obtained are in excellent agreement with emerging principles of intermediate filament expression during embryonic differentiation, thus emphasizing the potential use of the various EC lines to study differentiation in culture.  相似文献   

2.
Teratocarcinoma differentiation has been studied using sera specific for each of the five intermediate filament (IF) classes. These antibodies distinguish cells of epithelial, muscle, neural, astrocytic, and mesenchymal origin. In embryoid bodies, derived from embryo transplants and obtained in the ascitic fluid by transplantation of teratocarcinoma, the cells of the inner cellular mass did not express any of these intermediate filament types while the outer cells expressed cytokeratin. Intermediate filament expression in the embryoid body thus appears analogous to that in the blastocyst and differs from that in embryonal carcinoma (EC) lines. Twelve EC lines have now been shown to express vimentin although in some EC lines not all cells express vimentin. Other established permanent differentiated cell lines, derived from EC lines in vitro or from tumors in vivo, have been characterized with respect to the type of IF they contain. The distribution of different IF types has been examined in EC cells induced to differentiate by addition of retinoic acid. The proportion of cells expressing each type of intermediate filament appears to depend on the EC cell line used, on the inducing agent, and on the length of treatment. Thus, for instance, F9 cells express cytokeratin, PCC3 derivatives express vimentin, many 1009 derivatives express either glial fibrillar acidic protein (GFA) or neurofilament proteins. Overall the results obtained are in excellent agreement with emerging principles of intermediate filament expression during embryonic differentiation, thus emphasizing the potential use of the various EC lines to study differentiation in culture.  相似文献   

3.
The cytokeratin family of intermediate filament (IF) proteins can be grouped into the epithelial polypeptides ("soft alpha-keratins"), of which at least 19 exist in the various human epithelia, and the hair-type cytokeratins ("hard alpha-keratins"), which are typical of trichocytes, i.e., the living hair-forming cells. We have recently shown [34] that the hair follicles from diverse mammalian species contain a set of eight major cytokeratin polypeptides, four each of the acidic (type I) and the basic (type II) subfamily, which are different from all known epithelial cytokeratins. In addition, we have identified two new minor trichocytic cytokeratin polypeptides, designated Hax (type I) and Hbx (type II). Antibodies against trichocytic cytokeratins that do not crossreact with any of the epithelial cytokeratins have enabled us to study the expression of both kinds of cytokeratin in the various cell types of human and bovine hair follicles. Using immunofluorescence microscopy, we have observed intense reactions of trichocytic cytokeratins only in cells contributing to the forming hairs, i.e., hair shaft, medulla and cuticle, whereas immunostaining of the peribulbar matrix cells was weaker, if at all detectable. In contrast, epithelial cytokeratins were localized in both the inner and outer root sheath epithelia but, surprisingly, also in certain portions of the trichocyte column, notably cells of the cuticle, certain medullary cells, and trichocytes of the basalmost peripapillary cell layers. Cells coexpressing trichocytic and epithelial cytokeratins have been identified by double-label immunofluorescence microscopy. Epithelial cytokeratins of the inner and outer root sheath epithelia include, most remarkably, "simple-epithelium-type" cytokeratins 8, 18, and 19; these occur in certain peribulbar regions, in distinct patterns, but with variable frequencies. The occurrence of simple epithelial cytokeratins in hair follicles has also been confirmed by high-sensitivity immunoblotting of follicular polypeptides separated by gel electrophoresis. Vimentin-positive cells were abundantly interspersed (in some follicles, but not in all) between the trichocytes of the peripapillary cone, most of them probably being melanocytes. The cell-type complexity of the hair follicle and the different patterns of cytoskeletal protein expression in the various hair follicle cells are discussed in relation to the development and growth of this organ.  相似文献   

4.
The patterns of cytoskeletal differentiation were studied in 20 testicular non-seminomatous germ cell tumors by immunohistochemistry, using diverse monoclonal antibodies specific for different intermediate filament (IF) proteins and for desmoplakin. Immunofluorescence and immunoperoxidase methods on both formalin-fixed and frozen tissues were applied, in some cases together with a gel electrophoretic analysis of IF proteins. The tumors examined included embryonal carcinoma (EC), endodermal sinus tumor (EST), choriocarcinoma and teratoma. Nine of the tumors were composed of only one histological type, the others showed mixed components. Cytokeratins 8 and 18 were identified in all these neoplasms, but their immunostaining was weak in ECs. Cytokeratin 19 was absent or very scarce in ECs, but strongly expressed in ESTs, choriocarcinomas and teratomas, thus allowing the identification of small EST and choriocarcinoma elements in ECs even when they were morphologically not obvious. Occasionally, some cells in ECs and ESTs also stained for cytokeratins 4 and/or 17, indicating potential for epithelial stratification. The majority of the germ cell tumors showed varied amounts of vimentin, often in co-existence with cytokeratins. Neurofilaments were demonstrated in scattered tumor cells in a single case of EST. In the teratomas studied, each type of tissue component present showed the expected IF protein. However, in many germ cell tumors some stromal cells and blood vessels contained, in addition to vimentin and desmin, also cytokeratins 8 and 18. This heterogeneity of the cytoskeletal profile of germ cell tumors is indicative of the varied differentiation potential inherent in these neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Prosomes are small ribonucleoprotein (RNP) particles of unique morphology in the electron microscope but of variable protein and RNA composition, depending on the differentiation state of the cells studied. They were initially observed as subcomplexes of untranslated mRNP. In previous studies, we found that prosomes are associated to the intermediate filaments (IF) of cytokeratin type in HeLa and PtK1 cells. Here we have studied in detail the association of prosomal antigens with the IF networks in PtK1 cells. Contrary to our earlier conclusions, in these cells the vimentin fibers also carry prosomes which, thus, distribute in between the two types of networks. During the selective collapse of the IF induced by acrylamide, and upon recovery after the withdrawal of the drug, no dissociation of the prosome and IF networks of cytokeratin- and vimentin-type could be observed. These data show that even in a dynamic situation, prosome and IF antigens do not dissociate, indicating strongly that they are located on one and the same structure. Furthermore, the differential distribution of specific prosomal antigens between both types of intermediate filament networks indicates that prosomes do not ubiquitously populate the intermediate filaments but occupy subnetworks of either vimentin or cytokeratin type.  相似文献   

7.
Hes1 is a negative regulator of inner ear hair cell differentiation   总被引:13,自引:0,他引:13  
Hair cell fate determination in the inner ear has been shown to be controlled by specific genes. Recent loss-of-function and gain-of-function experiments have demonstrated that Math1, a mouse homolog of the Drosophila gene atonal, is essential for the production of hair cells. To identify genes that may interact with Math1 and inhibit hair cell differentiation, we have focused on Hes1, a mammalian hairy and enhancer of split homolog, which is a negative regulator of neurogenesis. We report here that targeted deletion of Hes1 leads to formation of supernumerary hair cells in the cochlea and utricle of the inner ear. RT-PCR analysis shows that Hes1 is expressed in inner ear during hair cell differentiation and its expression is maintained in adulthood. In situ hybridization with late embryonic inner ear tissue reveals that Hes1 is expressed in supporting cells, but not hair cells, of the vestibular sensory epithelium. In the cochlea, Hes1 is selectively expressed in the greater epithelial ridge and lesser epithelial ridge regions which are adjacent to inner and outer hair cells. Co-transfection experiments in postnatal rat explant cultures show that overexpression of Hes1 prevents hair cell differentiation induced by Math1. Therefore Hes1 can negatively regulate hair cell differentiation by antagonizing Math1. These results suggest that a balance between Math1 and negative regulators such as Hes1 is crucial for the production of an appropriate number of inner ear hair cells.  相似文献   

8.
Creatine kinase in epithelium of the inner ear.   总被引:1,自引:0,他引:1  
Epithelium of the inner ear in the gerbil and mouse was examined immunocytochemically for presence of creatine kinase (CK). Marginal cells of the cochlear stria vascularis and dark cells and transitional cells of the vestibular system were found to contain an abundance of the MM isozyme (MM-CK). CK in these cells concurs with that which is coupled to Na,K-ATPase in other cells and is considered to supply ATP for the Na,K-ATPase that mediates the high KCl of endolymph. Inner hair cells revealed content of the BB isozyme and in this respect resembled the energy-transducing photoreceptor cells in retina. In addition, outer phalangeal (Deiters') cells stained for both MM- and BB-CK whereas inner phalangeal cells evidenced content of only the BB isozyme. Immunolocalization of CK appeared similar in mouse and gerbil inner ear. Specificity of the staining was affirmed by observations in agreement with those reported for CK in various cell types and by staining with antisera from more than one source.  相似文献   

9.
Specific antibodies raised against human cerebellar calcium-binding protein (CaBP) intensely labelled the cochlear hair cells of the rat. The vestibular hair cells also stained weakly. In both inner and outer cochlear hair cells, the cuticular plate was the most stained area. These results suggest that CaBP may prevent excessive concentrations of intracellular calcium and thus modulate some Ca2+-mediated biochemical processes, especially at the level of the cuticular plate and stereocilia; CaBP could be involved in the mechanochemical coupling of hearing or vestibular function.  相似文献   

10.
The expression of intermediate filaments of the keratin- and the vimentin-type was studied in heterokaryons of human fibroblasts and amnion epithelial cells by immunofluorescence microscopy. Fibroblasts and their homokaryons showed a fibrillar, vimentin-specific fluorescence throughout the cytoplasm but were negative when stained for keratin. Amnion epithelial cells and their homokaryons, on the other hand, showed a keratin-specific fibrillar staining, and only some of them contained also detectable vimentin. When suspended epithelial cells were fused with adherent fibroblasts, keratin fibrils spread within 3 h into the fibroblasts, intermixing with the vimentin fibrils. 1-3 d after fusion, both vimentin and keratin filaments were expressed as typical fibrillar cytoplasmic arrays, and the distribution of keratin in heterokaryons resembled closely that of vimentin. A typical cell-to-cell arrangement of keratin fibrils, seen in cultures of amnion epithelial cells, could also be found between heterokaryons. Treatment of the cultures with vinblastine sulphate induced coiling of the vimentin filaments in both homo- and heterokaryons, whereas the keratin organization was only slightly affected. Our results show that both vimentin and keratin filaments are incorporated into the cytoskeleton of heterokaryons formed between fibroblasts and epithelial cells, and that they behave in the same way as in their parental cells. Both epithelial and fibroblastic characteristics thus appear to the coexpressed in such heterokaryons.  相似文献   

11.
The mammalian inner ear subserves the special senses of hearing and balance. The auditory and vestibular sensory epithelia consist of mechanically sensitive hair cells and associated supporting cells. Hearing loss and balance dysfunction are most frequently caused by compromise of hair cells and/or their innervating neurons. The development of gene- and cell-based therapeutics will benefit from a thorough understanding of the molecular basis of patterning and cell fate specification in the mammalian inner ear. This includes analyses of cell lineages and cell dispersals across anatomical boundaries (such as sensory versus nonsensory territories). The goal of this study was to conduct retroviral lineage analysis of the embryonic day 11.5(E11.5) mouse otic vesicle. A replication-defective retrovirus encoding human placental alkaline phosphatase (PLAP) and a variable 24-bp oligonucleotide tag was microinjected into the E11.5 mouse otocyst. PLAP-positive cells were microdissected from cryostat sections of the postnatal inner ear and subjected to nested PCR. PLAP-positive cells sharing the same sequence tag were assumed to have arisen from a common progenitor and are clonally related. Thirty five multicellular clones consisting of an average of 3.4 cells per clone were identified in the auditory and vestibular sensory epithelia, ganglia, spiral limbus, and stria vascularis. Vestibular hair cells in the posterior crista were related to one another, their supporting cells, and nonsensory epithelial cells lining the ampulla. In the organ of Corti, outer hair cells were related to a supporting cell type and were tightly clustered. By contrast, spiral ganglion neurons, interdental cells, and Claudius'' cells were related to cells of the same type and could be dispersed over hundreds of microns. These data contribute new information about the developmental potential of mammalian otic precursors in vivo.  相似文献   

12.
13.
《The Journal of cell biology》1983,97(5):1507-1514
Monoclonal antibodies (mAB) were raised to be used as probes to identify cytoplasmic components associated with intermediate filaments (IF). Four hybridomas (B27, B76, B78, and B100) secreting mAB were generated by fusing mouse myeloma cells with the spleen cells of mice immunized intraperitoneally with Triton-high salt insoluble materials from BHK-21 cells. This insoluble material consists mostly of IF, a small number of microfilaments, and some polyribosomes. Biochemical studies show that the Triton-insoluble materials contain many proteins, including vimentin (decamin) and desmin. Immunofluorescence microscopy of BHK-21 cells stained with the four mAB showed that these mAB decorate the IF in a dotted pattern. Double staining with polyclonal antibody to vimentin confirmed the reactivity of the mAB with the IF. These mAB also stained the vimentin-containing filament system in a variety of other cells including epithelial cells (PTK1 and HeLa) and cells of astroglial origin. Histological studies showed that mAB-B100 stained many types of tissue including epidermis, smooth muscle, and subdermis pericytes, but not the white matter nor the gray matter of the cerebellum and spinal cord. Immunoelectron microscopy with colloidal gold has shown that the mAB-B100 decorated the IF in clusters or aggregates around proteinaceous materials associated with the filaments. Results of immunoprecipitation indicate that mAB-B100 reacted with a protein of 50,000 daltons. These findings suggest that the mAB-B100 we have developed recognizes one of the many components of what appears to be an integrated cytoskeletal structure connected with intermediate filaments.  相似文献   

14.
Ion transport cells in gerbil inner ear were differentiated histochemically by staining glycoconjugates (GCs) with a battery of horseradish peroxidase-conjugated lectins. Strong staining with PSA and LCA showed a high content of N-linked oligosaccharides in transport cell GCs. Reactivity with PHA-L and PHA-E identified GC with triantennary and with bisected biantennary N-linked oligosaccharides, respectively, in these cells. High affinity for DSA and PWM demonstrated abundant N-acetyl lactosamine in N-linked side chains. Ion transporting epithelial cells reacting with lectins specific for N-linked oligosaccharides included strial marginal cells and outer sulcus cells of the cochlea and dark cells, transitional cells, and planum semilunatum cells of the vestibular system. In general, all of the inner ear transport epithelial cells revealed a similar lectin binding profile, with the one exception that SBA reacted strongly with ion transporting cells in the vestibular system but only weakly with those in the cochlea. Fibrocytes specialized for ion transport located in distinct areas in the suprastrial and inferior regions of the spiral ligament also stained with lectins that demonstrate N-glycosylation. However, transport fibrocytes differed from transport epithelial cells in two ways. First, they reacted e with HPA, DBA, VVA, and SJA specific for O-linkages and second, they failed to react with UEA I. The staining pattern for N-glycosylated GC resembled that for Na+, K(+)-ATPase in inner ear, suggesting a relationship between these constituents.  相似文献   

15.
All epithelial cells feature a prominent keratin intermediate filament (IF) network in their cytoplasm. Studies in transgenic mice and in patients with inherited epithelial fragility syndromes showed that a major function of keratin IFs is to provide mechanical support to epithelial cell sheets. Yet the micromechanical properties of keratin IFs themselves remain unknown. We used rheological methods to assess the properties of suspensions of epidermal type I and type II keratin IFs and of vimentin, a type III IF polymer. We find that both types of IFs form gels with properties akin to visco-elastic solids. With increasing deformation they display strain hardening and yield relatively rapidly. Remarkably, both types of gels recover their preshear properties upon cessation of the deformation. Repeated imposition of small deformations gives rise to a progressively stiffer gel for keratin but not vimentin IFs. The visco-elastic moduli of both gels show a weak dependence upon the frequency of the input shear stress and the concentration of the polymer, suggesting that both steric and nonsteric interactions between individual polymers contribute to the observed mechanical properties. In support of this, the length of individual polymers contributes only modestly to the properties of IF gels. Collectively these properties render IFs unique among cytoskeletal polymers and have strong implications for their function in vivo.  相似文献   

16.
Vimentin-type intermediate filaments (IFs) play an important role in cytoskeletal organization and cell morphology. We identified here a novel protein associated with vimentin-type IFs and named it vimentin-type IF-associated coiled-coil protein (Vmac). Vmac consists of 171 amino acids with a calculated Mr of 18,844 and has a coiled-coil domain in its N-terminal region and the PDZ-binding tetrapeptide consensus motif in its C-terminal region. Northern blotting showed that the Vmac mRNA was expressed in many rat tissues examined but most abundantly expressed in the kidney. Immunofluorescence microscopy revealed that Vmac was highly concentrated at podocytes of renal glomeruli. Podocytes are highly specialized epithelial cells characterized by a large cell body and numerous foot processes, and express vimentin-type IFs that are distributed in the cell body and the major processes. Immunoelectron microscopy revealed that Vmac was associated with vimentin-type IFs of podocytes. These results indicate that Vmac is a novel protein associated with vimentin-type IF in podocytes of rat kidney.  相似文献   

17.
The shaker 2 (sh2) and pirouette (pi) mouse mutants display severe inner ear dysfunction that involves both auditory and vestibular manifestation. Pathology of the stereocilia of hair cells has been found in both mutants. This study was designed to further our knowledge of the pathological characteristics of the inner ear sensory epithelia in both the sh2 and pi strains. Measurements of auditory brainstem responses indicated that both mutants were profoundly deaf. The morphological assays were specifically designed to characterize a pathological actin bundle that is found in both the inner hair cells and the vestibular hair cells in all five vestibular organs in these two mutants. Using light microscope analysis of phalloidin-stained specimens, these actin bundles could first be detected on postnatal day 3. As the cochleae matured, each inner hair cell and type I vestibular hair cell contained a bundle that spans from the region of the cuticular plate to the basal end of the cell, then extends along with cytoplasm and membrane, towards the basement membrane. Abnormal contact with the basement membrane was found in vestibular hair cells. Based on the shape of the cellular extension and the actin bundle that supports it, we propose to name these extensions “cytocauds.” The data suggest that the cytocauds in type I vestibular hair cells and inner hair cells are associated with a failure to differentiate and detach from the basement membrane.  相似文献   

18.
19.
Microinjection of antibodies to vimentin into fibroblast cell lines causes intermediate filaments (IFs) to build perinuclear caps. We have extended these findings by microinjection of monoclonal antibodies specific for different IF types to non-epithelial cell lines of human origin, which co-express two different IF proteins. Thus GFA and vimentin IgGs have been microinjected in separate experiments into a glioma cell line, desmin and vimentin IgGs into RD cells, and vimentin IgGs into a cell line which co-expresses neurofilaments and vimentin. In all instances, microinjection of a single antibody causes the formation of perinuclear caps in which the two different IF proteins co-localize, suggesting that vimentin and the second IF type present in each cell line localize to the same 10-nm filaments. Immunoelectron microscopy using desmin and vimentin antibodies made in different species and appropriate second antibodies labelled with 5 and 20 nm gold particles confirm this result for RD cells. When Fab' fragments of the vimentin IgGs are microinjected into different cell types, formation of perinuclear caps is observed in immunofluorescence microscopy. In RD cells immunoelectron microscopy shows that the Fab' fragments induce caps which appear less dense than the caps seen after microinjection of IgGs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号