首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mixture of xanthine or hypoxanthine and xanthine oxidase generates the superoxide radical, O2?, and H2O2. In the presence of iron salts, O2? and H2O2 can interact to produce the hydroxyl radical, OH·. Superoxide-dependent formation of OH· can be measured by its ability to hydroxylate salicylate as followed by an improved colorimetric assay described in this paper. A more accurate analysis of OH· can be obtained using its ability to hydroxylate phenol, the hydroxylated products being separated and measured after derivatization using gas-liquid chromatography and electron-capture detection. The derivatization and separation techniques are described.  相似文献   

3.
Yezierski RP 《Neuro-Signals》2005,14(4):182-193
The condition of pain after spinal cord injury (SCI) affects the life quality of nearly 70% of individuals with SCI. Clinical studies over the past decade have provided important insights into the complexities of the clinical and psychosocial characteristics of this debilitating consequence of SCI. The use of experimental models developed to study at-level or below-level pain has provided an appreciation for the mechanism(s) responsible for the onset and progression of these conditions. Important to the studies related to SCI pain has been the focus on the molecular, biochemical, anatomical, and functional consequences of SCI that have identified potential therapeutic targets for the design of novel treatment strategies.  相似文献   

4.
The production of hydroxyl radicals by adriamycin in red blood cells   总被引:2,自引:0,他引:2  
Spin trapping of the free radicals formed from the interaction between adriamycin and red blood cells resulted in the formation of a hydroxyl spin adduct. The formation of hydroxyl radicals was found to be inhibited by mannitol. Hemoglobin was found not to be obligatory for the formation of hydroxyl radicals which probably result from the reduction of hydrogen peroxide by adriamycin semiquinone.  相似文献   

5.
6.
2-Oxo-4-thiomethylbutyric acid (OMBA) is a widely used oxygen-radical-scavenging agent and has been used for the detection of .OH-like species in a variety of systems. This scavenger reacts with other radicals and is therefore not specific for .OH. Since iron is required in most systems for the generation of OH-like species, studies were carried out to investigate the possible interaction of OMBA with iron. Fe3+ reacted with OMBA to produce complexes that gave rise to discrete spectra. Intense purple complexes, with broad absorbance maxima of 525-550 nm, were found at OMBA/Fe3+ ratios of up to 1:1, whereas red complexes with a prominent shoulder between 440 and 480 nm were found at higher OMBA/Fe3+ ratios. OMBA caused reduction of ferric iron to the ferrous state, as detected with 2,2'-bipyridyl as the indicator. This reduction occurs in the dark, can be photo-accelerated especially by light with wavelengths near the absorbance maximum of the respective complexes, and is increased as the OMBA/Fe3+ ratio is elevated. The presence of phosphate buffer quenches the purple and red ferric-ion-OMBA complexes and lowers the rate of reduction of Fe3+ by OMBA about 10-fold. The resulting ferrous-ion-OMBA-phosphate complex is very stable against autoxidation. Both the ferrous-ion-OMBA and ferric-ion-OMBA complexes reacted with H2O2, with the subsequent production of ethylene gas from OMBA. The interaction with H2O2 resulted in discrete spectral changes of both the ferrous-ion-OMBA and ferric-ion-OMBA complexes. The ferrous-ion-OMBA/H2O2 or ferric-ion-OMBA/H2O2 system appeared to produce .OH free radicals via a Fenton-type of reaction since ethylene production was inhibited by competitive OH scavengers. Ferrous-ion-OMBA complex reacted with H2O2 not only to produce ethylene from the OMBA, but also to promote the oxidation of another scavenger, ethanol. The ability of OMBA to chelate iron, to promote reduction of ferric iron and to react with H2O2 to produce potent oxidizing radicals may play a role in the lack of specificity of OMBA as a scavenger of oxygen radicals.  相似文献   

7.
Stimulated neutrophils generate superoxide and hydroxyl radicals. A membrane-bound NADPH oxidase, inactive in the resting state, is responsible for superoxide production. The production of hydroxyl radicals is through a secondary reaction. A Fenton-catalysed Haber—Weiss reaction is proposed. Transferrin was used as the catalyst in this investigation.  相似文献   

8.
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex.  相似文献   

9.
Spinal cord injury (SCI), despite considerable progress in palliative care, has currently no satisfying therapeutic leading to functional recovery. Inability of central nervous system severed axons to regenerate after injury is considered to originate from both limited intrinsic capabilities of neurons and inhibitory effect of the local environment. Precisely, the so-called "glial scar" formed by reactive astrocytes in response to injury exerts a well-known axon-outgrowth inhibitory effect. However, recent studies revealed that role of reactive astrocytes after SCI is more complex. During the first weeks after injury, reactive astrocytes indeed protect the tissue and contribute to a spontaneous relative functional recovery. Compaction of the lesion center and seclusion of inflammatory cells by migrating reactive astrocytes seem to underlie this beneficial effect. Stimulation of reactive astrocytes migration in the sub-acute phase of SCI might thus represent a new approach to improve the functional outcome of patients.  相似文献   

10.
Iron(II) salts in aqueous solution, or iron(III) salts in the presence of an O√2 generating system, can activate dioxygen to produce hydroxyl radicals. These are detected indirectly by their ability to degrade deoxyribose with the formation of thiobarbituric acid-reactive (TBA) products. Iron salts also catalyse the peroxidation of phospholipids resulting in the formation of TBA-reactive products. Hydroxyl radicals were responsible for the degradation of deoxyribose but not for the observed peroxidation of phospholipid. The function of O√2 in both deoxyribose degradation and phospholipid peroxidation seems to be that of reducing iron(III) into iron(II).  相似文献   

11.
From the algal genus Ostrobium two species are known which express a chlorophyll antenna absorbing between 710 and 725 nm to a different extent. In a comparative study with these two species it is shown that quanta absorbed by this long wavelength antenna can be transferred to PS II leading to significant PS␣II-related electron transfer. It is documented that under monochromatic far red light illumination growth continues with rather high efficiency. The data show that the uphill-energy transfer to PS II reduces the quantum yield under white light significantly. It is discussed that this strategy of energy conversion might play a role in special environments where far red light is the predominant energy source.  相似文献   

12.
Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.  相似文献   

13.
Isolated haemosiderin contained iron and nitrogen in a weight ratio of 6.75, with phosphorus and no detectable haem. Considerably more iron was released from haemosiderin under acidic conditions than under neutral conditions in the presence of ascorbate, nitrilotriacetate or dithionite. Unlike the situation with ascorbate, chelators such as citrate, ADP or succinate induced the release of only some iron, with almost no pH-dependence. Dehydroascorbate (the oxidized form of ascorbate with no reducing capacity) behaved like citrate, ADP, succinate or desferal, rather than like ascorbate itself, in releasing iron. GSH had less effect on the release of iron than these chelators, but in the presence of a small amount of chelator the release of iron increased, especially under acidic conditions. Thus reduction, chelation and pH were all found to be important factors involved in the release of iron from haemosiderin. Investigation by e.p.r. of hydroxyl-radical production by the released iron showed high radical productivity at an acidic pH. However, at a physiological pH, almost no radical formation was detected, except in the presence of nitrilotriacetate. These findings suggested that, under physiological conditions, haemosiderin was not an effective iron donor and was almost not involved in radical production. Under acidic conditions, however, such as in inflammation, hypoxia and in a lysosomal milieu, it could possibly be an iron donor and is thought to be implicated in radical production and tissue damage in iron-overloaded conditions.  相似文献   

14.
15.
16.
17.
It has been suggested that both free metals and reduced ferredoxin (Fd) participate in the light-induced production of hydroxyl radicals (OH*) in thylakoid membranes of chloroplasts. The most direct evidence for the involvement of Fd in OH* formation under physiological conditions was reported by Jakob and Heber (Plant Cell Physiol., 1996, 37, 629-635), who used the oxidation of dimethylsulfoxide to methane sulfinic acid as an indicator of OH* production. We confirmed their conclusions using a more sensitive and reliable EPR spin-trapping method and extended their work by additional findings. Free metal-dependent and ferredoxin-dependent OH* production was studied simultaneously and strong metal chelator Desferal was used to distinguish between these reaction pathways. The participation of protein-bound iron within photosystem I was confirmed by partial suppression of OH* generation in broken chloroplasts by methyl viologen. The enhancement in the production of OH* in thylakoid membranes by externally added ferredoxin can be considered as a straightforward evidence of the involvement of ferredoxin in OH* formation.  相似文献   

18.
The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.  相似文献   

19.
Transgenic (TG) mice with cardiac-specific overexpression of tumor necrosis factor-alpha develop congestive heart failure with myocardial inflammation. The purpose of this study was to investigate the effects of tumor necrosis factor-alpha on reactive oxygen species (ROS) in this mouse model of cardiomyopathy. Myocardial production of hydroxyl radical detected by electron spin resonance spectroscopy was significantly increased in TG. Myocardial expression of Mn-SOD was significantly decreased in TG, whereas that of Cu,Zn-SOD was unaltered. Myocardial expression of catalase was unchanged, whereas that of glutathione peroxidase was significantly increased, in TG. Histological analysis revealed that macrophages and CD4-positive lymphocytes were increased in TG myocardium. To investigate whether these infiltrating inflammatory cells were the source of ROS, we treated TG mice with cyclophosphamide for 7 days. Although cyclophosphamide significantly suppressed the infiltration of inflammatory cells, it did not diminish the production of hydroxyl radical in TG myocardium. Damaged myocytes, but not infiltrating inflammatory cells, may be the source of ROS in TG.  相似文献   

20.
Summary The possibility that nitric oxide is somehow involved in the early bioelectrical disturbances following spinal cord injury in relation to the later pathophysiology of the spinal cord was examined in a rat model of spinal cord trauma. A focal trauma to the rat spinal cord was produced by an incision of the right dorsal horn of the T 10–11 segments under urethane anaesthesia. The spinal cord evoked potentials (SCEP) were recorded using epidural electrodes placed over the T9 and T12 segments of the cord following supramaximal stimulation of the right tibial and sural nerves in the hind leg. Trauma to the spinal cord significantly attenuated the SCEP amplitude (about 60%) immediately after injury which persisted up to 1h. However, a significant increase in SCEP latency was seen at the end of 5h after trauma. These spinal cord segments exhibited profound upregulation of neuronal nitric oxide synthase (NOS) immunoreactivity, and the development of edema and cell injury. Pretreatment with a serotonin synthesis inhibitor drug p-chlorophenylalanine (p-CPA) or an anxiolytic drug diazepam significantly attenuated the decrease in SCEP amplitude, upregulation of NOS, edema and cell injury. On the other hand, no significant reduction in SCEP amplitude, NOS immunolabelling, edema or cell changes were seen after injury in rats pretreated with L-NAME. These observations suggest that nitric oxide is somehow involved in the early disturbances of SCEP and contribute to the later pathophysiology of spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号