首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past 15 years, extracellular recordings from the rat supraoptic and paraventricular nuclei have revealed two populations of endocrine neurons that can be antidromically activated from neurosecretory axons in the neurohypophysis. Both the oxytocinergic and vasopressinergic populations of magnocellular neuroendocrine cells (MNCs) fire bursts of action potentials that facilitate hormone release from neurohypophyseal terminals. Moreover, both populations are osmosensitive, increasing their firing rate as osmolarity is elevated. Recently, slice and explant preparations of hypothalamus have enabled intracellular recording of these cells in normal and modified saline solutions. Spiking, bursting, and osmosensitivity can occur independently of synaptic input, enabling MNCs, for example, to transform an unpatterned depolarizing influence into the repetitive bursting pattern associated with vasopressin release. Current-clamp studies have started to characterize the repertoire of conductances across the MNC membrane that are responsible for action potential discharge, afterpotentials, bursting, and osmosensitivity. This provides a basis not only for further voltage-clamp studies, but for understanding transmitter effects that act by modulating intrinsic MNC currents.  相似文献   

2.
Summary The activated hypothalamic magnocellular neurosecretory system of the rat was studied in tissue sections, double stained with the unlabeled antibody peroxidase-antiperoxidase complex (PAP) technique. The results indicate that in animals with an activated hypothalamic magnocellular neuroendocrine system, as well as in normal animals, vasopressin and oxytocin are exclusively synthesized in separate vasopressinergic and oxytocinergic neurons.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

3.
Summary With the use of immunocytochemistry, it was shown that both the supraoptic and paraventricular hypothalamic nuclei in humans contain at least two different neurophysins. These two human neurophysins are immunologically related to bovine neurophysin I and neurophysin II, respectively. One human neurophysin is associated with vasopressin, the other with oxytocin. Human vasopressin-neurophysin and oxytocin-neurophysin are located separately in two different types of neurons, which correspond respectively to the vasopressinergic and oxytocinergic neurons of both the supraoptic and paraventricular nuclei. The neurophysin of the human vasopressinergic suprachiasmatic neurons appears to be closely related to or identical with neurophysin of the vasopressinergic neurons of the human magnocellular hypothalamic nuclei.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

4.
A small balloon placed at the junction of the superior vena cava and right atrium was used to stimulate cardiac volume receptors in pentobarbital sodium-anesthetized male rats. Extracellular recordings were obtained from antidromically identified vasopressinergic and oxytocinergic neurosecretory cells of the supraoptic nucleus. Cells were considered sensitive to the stimulus if balloon inflation resulted in a 30% change in firing frequency. Balloon inflation that did not stretch the caval-atrial junction had no significant effect on vasopressin neurons (n = 51, P > 0.05). Stretch of the caval-atrial junction decreased the firing activity in 64 of 83 putative vasopressin neurons (P < 0.01 compared with control). Stretch of the caval-atrial junction influenced the firing activity of only 3 of 26 antidromically activated oxytocinergic neurons, an effect not statistically different from control (P > 0. 05). When bilateral vagotomy was performed while recording from vasopressin neurons (n = 5), sensitivity to stretch of the caval-atrial junction was eliminated. Cardiac receptors located at the junction of the superior vena cava and right atrium may be important in regulating the activity of vasopressinergic but not oxytocinergic neurons of the supraoptic nucleus.  相似文献   

5.
Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.  相似文献   

6.
The magnocellular neuropeptidergic cells of the supraoptic and paraventricular nuclei comprise much of what is known as the hypothalamoneurohypophyseal system and is involved in several functions, including body fluid balance, parturition, and lactation. In vivo experiments have not produced a clear understanding of some of the crucial features associated with the functioning of this system. In particular, questions relating to the osmosensitivity of magnocellular neurons and the mechanisms(s) by which their characteristic firing patterns are generated have not been answered by using the older approaches. Electrophysiological studies with brain slices present direct evidence for osmosensitivity, and perhaps even osmoreceptivity, of magnocellular neurons. Other evidence is reviewed indicating that the phasic bursting patterns of activity associated with vasopressin-releasing neurons: 1) occur in the absence of patterned chemical synaptic input, 2) are probably influenced by localized changes in extracellular K+ concentrations, 3) may be modulated by electrotonic conduction across gap junctions connecting magnocellular neurons, and 4) are likely to be generated by endogenous membrane currents.  相似文献   

7.
Summary Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

8.
The supraoptic (SON) and paraventricular (PVN) magnocellular nuclei of the hypothalamus undergo reversible anatomical remodeling under conditions of intense secretion of neurohypophysial hormones, such as lactation and chronic dehydration. This morphological plasticity is characterized by a pronounced reduction in astrocytic coverage of neurons, which results in an increased number and extent of directly juxtaposed somatic and dendritic surfaces. As a consequence, astrocyte-mediated clearance of glutamate from the extracellular space is altered, which causes an increased concentration and range of action of the excitatory amino acid in the extracellular space. This leads to a reduction of synaptic efficacy at excitatory and inhibitory inputs through the activation of presynaptic metabotropic glutamate receptors. By contrast, the action of glio transmitters released from astrocytes and acting on adjacent magnocellular neurons is limited during such anatomical remodeling. This includes glia derived ATP mediating potentiation of glutamatergic transmission, a process compromised by the neuronal-glial reorganization.Together, these studies on hypothalamic magnocellular nuclei provide new insights on the contribution of glial cells on neuronal activity.  相似文献   

9.
Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei. Here, we tested whether magnocellular neurons of the PVN receive excitatory synaptic input from the contralateral PVN and the region of the retrochiasmatic SON (SONrx) via norepinephrine-sensitive internuclear glutamate circuits. Whole cell patch-clamp recordings were performed in PVN magnocellular neurons in coronal hypothalamic slices from male rats, and the ipsilateral SONrx region and contralateral PVN were stimulated using electrical and chemical stimulation. Electrical and glutamate microdrop stimulation of the ipsilateral SONrx region or contralateral PVN elicited excitatory postsynaptic potentials/currents (EPSP/Cs) in PVN magnocellular neurons mediated by glutamate release, revealing internuclear glutamatergic circuits. Microdrop application of norepinephrine also elicited EPSP/Cs, suggesting that these circuits could be activated by activation of noradrenergic receptors. Repetitive electrical stimulation and drop application of norepinephrine, in some cases, elicited bursts of action potentials. Our data reveal glutamatergic synaptic circuits that interconnect the magnocellular nuclei and that can be activated by norepinephrine. These internuclear glutamatergic circuits may provide the functional architecture to support burst generation and/or burst synchronization in hypothalamic magnocellular neurons under conditions of activation.  相似文献   

10.
Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

11.
Acidosis, associated with metabolic disorders, leads to the pathological changes of cognition and behavior in the clinical practices of neurology and psychology. The cellular mechanisms underlying these cerebral dysfunctions remain unclear. By using electrophysiological approach and changing extracellular pH, we have investigated the effects of acidic environment on cortical GABAergic neurons in terms of their abilities of firing spikes and responses to synaptic inputs. Artificial cerebral spinal fluid in low pH impairs the responses to excitatory synaptic inputs and the abilities of encoding sequential spikes at these GABAergic neurons. The impairments of neuronal spiking are associated with the increases of refractory periods and threshold potentials. Our studies reveal that acidosis may impair cortical GABAergic neurons and in turn deteriorate brain functions, in which their final targets are voltage-gated sodium channels and glutamate receptor-channels.  相似文献   

12.
The electrical properties of neurons in the supraoptic nucleus (so.n.) have been studied in the hypothalamic slice preparation by intracellular and extracellular recording techniques, with Lucifer Yellow CH dye injection to mark the recording site as being the so.n. Intracellular recordings from so.n. neurons revealed them to have an average membrane potential of -67 +/- 0.8 mV (mean +/- s.e.m.), membrane resistance of 145 +/- 9 M omega with linear current-voltage relations from 40 mV in the hyperpolarizing direction to the level of spike threshold in the depolarizing direction. Average cell time constant was 14 +/- 2.2 ms. So.n. action potentials ranged in amplitude from 55 to 95 mV, with a mean of 76 +/- 2 mV, and a spike width of 2.6 +/- 0.5 ms at 30% of maximal spike height. Both single spikes and trains of spikes were followed by a strong, long-lasting hyperpolarization with a decay fitted by a single exponential having a time constant of 8.6 +/- 1.8 ms. Action potentials could be blocked by 10(-6) M tetrodotoxin. Spontaneously active so.n. neurons were characterized by synaptic input in the form of excitatory and inhibitory postsynaptic potentials, the latter being apparently blocked when 4 M KCl electrodes were used. Both forms of synaptic activity were blocked by application of divalent cations such as Mg2+, Mn2+ or Co2+. 74% of so.n. neurons fired spontaneously at rates exceeding 0.1 spikes per second, with a mean for all cells of 2.9 +/- 0.2 s-1. Of these cells, 21% fired slowly and continuously at 0.1 - 1.0 s-1, 45% fired continuously at greater than 1 Hz, and the remaining 34% fired phasically in bursts of activity followed by silence or low frequency firing. Spontaneously firing phasic cells showed a mean burst length of 16.7 +/- 4.5 s and a silent period of 28.2 +/- 4.2 s. Intracellular recordings revealed the presence of slow variations in membrane potential which modified the neuron's proximity to spike threshold, and controlled phasic firing. Variations in synaptic input were not observed to influence firing in phasic cells.  相似文献   

13.
Summary The human hypothalamic-neurohypophysial hormone-producing nuclei were investigated with the unlabeled antibody peroxidase-antiperoxidase complex (PAP) technique at the light microscopic level. The size, shape and location of the supraoptic, paraventricular, accesssory supraoptic and suprachiasmatic nuclei were determined. It was demonstrated in the human hypothalamus, as well as in the hypothalamus of other mammals, that vasopressin and oxytocin are synthesized in separate neurons. In each of the nuclei of the magnocellular neurosecretory system, the distribution, ratios and structural features of the vasopressinergic and oxytocinergic neurons were determined. It was shown that the human suprachiasmatic nuclei contain numerous neurophysin-vasopressin-producing neurons.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

14.
Background firing activity was recorded in guinea pig neocortical slices maintained using extracellular techniques. Between 30 and 40% of neurons continued to generate action potentials, although at a reduced rate, when synaptic disruption had been induced by adenosine or adenosine 5-monophosphate action. These cells were classed as endogenously active. No connection could be shown between neuronal firing pattern and capacity for autonomous generation of action potentials. The remaining neurons tested remained inactive after synaptic disruption, but regained their capacity for spontaneous firing following washout. The activity of these cells was classified as exogenous (or the result of synaptic excitation induced by other neurons in the same slice). The majority of cells with a highly regular discharge pattern initially stopped discharging during synaptic blockade and resumed their activity following washout. This would suggest that a miniature excitatory circuit with 30–140 msec cycles operates in these slices.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 816–824, November–December, 1987.  相似文献   

15.
Many protocols have been designed to differentiate human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48–55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of iPSC-derived neurons mature over time.  相似文献   

16.
The patients suffering from acidosis usually sign psychological deficits. The cerebral dysfunction is reportedly caused by an acid-induced functional impairment of GABAergic neurons; however, the role of pyramidal neurons in this process remains unclear. By using electrophysiological method and changing extracellular pH, we investigated the influence of acidic environment on pyramidal neurons in the cortical slices, such as their ability of firing spikes and response to synaptic inputs. A low pH of artificial cerebral spinal fluid elevates the responses of pyramidal neurons to excitatory synaptic inputs and their ability of encoding digital spikes, as well as reduces the signal transmission at GABAergic synapses. The elevated ability of neuronal spiking is associated with the decreases of refractory periods and threshold potentials. Therefore, acidosis deteriorates brain functions through making the activities between cortical pyramidal neurons and GABAergic neurons imbalanced toward the overexcitation of neural networks, a process similar to neural excitotoxicity.  相似文献   

17.
The hypothalamic paraventricular nucleus (PVN) plays a critical role in cardiovascular and neuroendocrine regulation. ANG II (ANG) acts throughout the periphery in the maintenance of fluid-electrolyte homeostasis and has also been demonstrated to act as a neurotransmitter in PVN exerting considerable influence on neuronal excitability in this nucleus. The mechanisms underlying the ANG-mediated excitation of PVN magnocellular neurons have yet to be determined. We have used whole cell patch-clamp techniques in hypothalamic slices to examine the effects of ANG on magnocellular neurons. Application of ANG resulted in a depolarization of magnocellular neurons, a response that was abolished in TTX, suggesting an indirect mechanism of action. Interestingly, ANG also increased the frequency of excitatory postsynaptic potentials/currents in magnocellular neurons, an effect that was abolished after application of the glutamate antagonist kynurenic acid. ANG was without effect on the amplitude of excitatory postsynaptic currents, suggesting a presynaptic action on an excitatory interneuron within PVN. The ANG-induced depolarization was shown to be sensitive to kynurenic acid, revealing the requisite role of glutamate in mediating the ANG-induced excitation of magnocellular neurons. These observations indicate that the ANGergic excitation of magnocellular PVN neurons are dependent on an increase in glutamatergic input and thus highlight the importance of a glutamate interneuron in mediating the effects of this neurotransmitter.  相似文献   

18.
Summary High molecular weight kininogen (HKg) and T kininogen (TKg) were detected and localized by immunocytochemistry in adult rat hypothalamus. In addition, kininogens were measured by their direct radioimmunoassay (RIA) or by indirect estimation of kinins released after trypsin hydrolysis and high pressure liquid chromatography (HPLC) separation of bradykinin (BK) and T kinin. A specific HKg immunoreactivity demonstrated with antibodies directed against the light chain (LC) of HKg was colocated with SRIF in neurons of hypothalamic periventricular area (PVA) projecting to external zone (ZE) of median eminence (ME). Heavy chain (HC) immunoreactivity which could be related to HKg or to low molecular weight kininogen (LKg) was detected in some other systems: i) parvocellular neurons of suprachiasmatic (SCN) and arcuate nuclei containing SRIF, ii) magnocellular neurons (mostly oxytocinergic) of paraventricular (PVN) and supraoptic (SON) nuclei, iii) neurons of dorsomedian and lateral hypothalamic areas. TKg immunostaining was restricted to magnocellular neurons of PVN, SON, accessory nuclei (mostly vasopressinergic) and to parvocellular neurons of SCN (vasopressinergic). TKg projections are directed towards the internal zone (ZI) of ME, but very few immunoreactive terminals are detectable in neurohypophysis. TKg staining parallels with vasopressin during water deprivation, and is undetectable in homozygous Brattleboro rats. In some magnocellular neurons, TKg and HC (related to HKg or LKg) are coexpressed. TKg, was also detected in hypothalamus and cerebellum extracts by direct RIA, and BK and T kinin were identified after trypsin hydrolysis. HKg and LKg can act as precursor of BK which can play a physiological role as releasing factor, neuromodulator — neurotransmitter, — or modulator of local microcirculation in hypothalamus. The three kininogens are also potent thiolprotease inhibitors which could modulate both the maturation processes of peptidic hormones and their inactivation and catabolism.  相似文献   

19.
The mammalian supraoptic nucleus (SON) is a neuroendocrine center in the brain regulating a variety of physiological functions. Within the SON, peptidergic magnocellular neurons that project to the neurohypophysis (posterior pituitary) are involved in controlling osmotic balance, lactation, and parturition, partly through secretion of signaling peptides such as oxytocin and vasopressin into the blood. An improved understanding of SON activity and function requires identification and characterization of the peptides used by the SON. Here, small-volume sample preparation approaches are optimized for neuropeptidomic studies of isolated SON samples ranging from entire nuclei down to single magnocellular neurons. Unlike most previous mammalian peptidome studies, tissues are not immediately heated or microwaved. SON samples are obtained from ex vivo brain slice preparations via tissue punch and the samples processed through sequential steps of peptide extraction. Analyses of the samples via liquid chromatography mass spectrometry and tandem mass spectrometry result in the identification of 85 peptides, including 20 unique peptides from known prohormones. As the sample size is further reduced, the depth of peptide coverage decreases; however, even from individually isolated magnocellular neuroendocrine cells, vasopressin and several other peptides are detected.  相似文献   

20.
In experiments on the preparation of a frog perfused brain, using recording of intracellular potentials the vestibulospinal neurons were identified on the basis of excitatory postsynaptic potentials evoked by the stimulation of the ipsilateral vestibular nerve and antidromic activation from the stimulation of the cervical and lumbar enlargements of the spinal cord. The average conduction velocity determined for axons of C neurons was 10.67 m/s and for L neurons 15.84 m/s. The ratio of C and L neurons over the vestibular nuclear complex was very stimular to each other: 52% C neurons and 48% L neurons. The majority of both types of neurons were localized in the lateral vestibular nucleus (58.6%), to the lesser extent in the descending vestibular nucleus (30.7%) and very little in the medial vestibular nucleus (10.6%). Fast and slow cells were detected among the vestibulospinal neurons. The fast neurons of L cells did not prevail greatly over the slow ones, whereas the slow neurons of C cells prevailed comparatively largely over the fast neurons. Thus, it became possible to reconstruct spatial distribution of the identified vestibulospinal neurons. The results of spatial distribution of C and L vestibulospinal neurons in the frogs failed to conform to definite somatotopy, which is characteristic for mammalian vestibular nuclei. C and L neurons in the frog's vestibular nuclei as a source of vestibulospinal fibres, are scattered separately or more frequently in groups, so that they establish a "patch-like" somatotopy and do not form a distinctly designed fields as in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号