首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FLP recombinase interacts with its target sequence with the formation of three distinct DNA-protein complexes. The first complex leaves neither a DNase footprint nor is the DNA protected from methylation by dimethyl sulfate. We have found, however, that the FLP protein is bound predominantly to only one of the three 13 base-pair (bp) symmetry elements. This asymmetric loading of the FLP site seems to require the presence of an adjacent directly repeated 13 bp element. We speculate that this asymmetric filling of the target site may be accompanied by the unique order of cleavage and exchange of DNA strands.  相似文献   

2.
When the FLP recombination target (FRT) is cut in half so that only one FLP protein-binding site is present, FLP protein forms a complex in which two such sites are linked head to head. Although held together exclusively by noncovalent interactions, this complex survives electrophoresis in an agarose gel and exhibits a half-life that can be measured in hours. Characterization of this complex indicates that a very stable, asymmetric dimeric complex of FLP protein monomers bound to the FRT is a likely early intermediate in FLP-mediated site-specific recombination. The apparent asymmetry is a property of the protein components of the complex. Even though the DNA components form a perfect palindrome, only one of the two possible DNA cleavage steps takes place in the course of complex formation. Formation of this complex does not occur with half-FRT site DNA substrates that preclude head to head monomer contact or when a FLP mutant protein is used that binds the FRT site but cannot cleave it. Trimeric and tetrameric complexes are also observed, the latter at very low frequency. These results are discussed in terms of an expanded model for early events in FLP-mediated site-specific recombination.  相似文献   

3.
The FLP recombinase of the 2 mu plasmid of Saccharomyces cerevisiae binds to a target containing three 13 base-pair symmetry elements called a, b and c. The symmetry elements b and c are in direct orientation while the a element is in inverted orientation with respect to b and c on the opposite side of an eight base-pair core region. Each symmetry element acts as a binding site for the FLP protein. The FLP protein can form three different complexes with the FLP recognition target (FRT site) according to the number of elements within the site that are occupied by the FLP protein. Binding of FLP to the FRT site induces DNA bending. We have measured the angles of bends caused by the binding of the FLP protein to full and partial FRT sites. We find that FLP induces three types of bend in the FRT-containing DNA. The type I bend is approximately 60 degrees and results from a molecule of FLP bound to one symmetry element. The type II bend is greater than 144 degrees and results from FLP molecules bound to symmetry elements a and b. The type III bend is approximately 65 degrees and results from FLP proteins bound to symmetry elements b and c. Certain FLP proteins that are defective in recombination can generate the type I and type III bends but are impaired in their ability to induce the type II bend. We discuss the role of bending in FLP-mediated recombination.  相似文献   

4.
When yeast FLP recombinase is expressed from the phage lambda PR promoter in a Salmonella host, it cannot efficiently repress an operon controlled by an operator/promoter region that includes a synthetic, target FLP site. On the basis of this phenotype, we have identified four mutant FLP proteins that function as more efficient repressors of such an operon. At least two of these mutant FLP proteins bind better to the FLP site in vivo and in vitro. One mutant changes the presumed active site tyrosine residue of FLP protein to phenylalanine, is blocked in recombination, and binds the FLP site about five-fold better than the wild-type protein. A second mutant protein that functions as a more efficient repressor retains catalytic activity. We conclude that the eukaryotic yeast FLP recombinase, when expressed in a heterologous prokaryotic host, can function as a repressor, and that mutant FLP proteins that bind DNA more tightly may be selected as more efficient repressors.  相似文献   

5.
The FLP recombination target (FRT) can be cut in half so that only one FLP protein binding site is present (a "half site"). FLP protein binds the half sites and joins them into dimeric, asymmetric head-to-head complexes held together chiefly by strong noncovalent interactions. These complexes react with full (normal) FRT sites to generate a variety of products. Analysis of these DNA species reveals that the reaction follows a well-defined reaction pathway that generally parallels the normal reaction pathway. The system is useful in analyzing early steps in recombination, since the identity of the products in a given recombination event unambiguously pinpoints the order in which the cleavage and strand exchange reactions occur. Two conclusions are derived from the present study: (i) Formation of the dimeric head-to-head complex of half sites is a prerequisite to further steps in recombination. (ii) The identity of the base pairs at positions 6 and -6 within the FRT site has a subtle effect in directing the first strand exchange event in the reaction to predominantly one of two possible cleavage sites. In addition, results are presented that suggest that a DNA-DNA pairing intermediate involving only two base pairs of the core sequence is formed prior to the first cleavage and strand exchange. DNA-DNA interactions may therefore not be limited to the isomerization step that follows the first strand exchange.  相似文献   

6.
The 2 micron plasmid of Saccharomyces cerevisiae codes for a site-specific recombinase, the FLP protein, that catalyzes efficient recombination across two 599-base-pair (bp) inverted repeats of the plasmid DNA both in vivo and in vitro. We analyzed the interaction of the purified FLP protein with the target sequences of two point mutants that exhibit impaired FLP-mediated recombination in vivo. One mutation lies in one of the 13-bp repeat elements that had been previously shown to be protected from DNase digestion by the FLP protein. This mutation dramatically reduces FLP-mediated recombination in vitro and appears to act by reducing the binding of FLP protein to its target sequence. The second mutation lies within the 8-bp core region of the FLP target sequence. The FLP protein introduces staggered nicks surrounding this 8-bp region, and these nicks are thought to define the sites of strand exchange. The mutation in the core region abolishes recombination with a wild-type site. However, recombination between two mutated sites is very efficient. This result suggests that proper base pairing between the two recombining sites is an important feature of FLP-mediated recombination.  相似文献   

7.
The FLP recombinase from the 2 microns plasmid of Saccharomyces cerevisiae contains a region from amino acid 185 to 203 that is conserved among several FLP-like proteins from different yeasts. Using site-directed mutagenesis, we have made mutations in this region of the FLP gene. Five of twelve mutations in the region yielded proteins that were unable to bind to the FLP recombination target (FRT) site. A change of arginine at position 191 to lysine resulted in a protein (FLP-R191K) that could bind to the FRT site but could not catalyze recombination. This mutant protein accumulated as a stable protein-DNA complex in which one of the two bound FLP proteins was covalently attached to the DNA. FLP-R191K was defective in strand exchange and ligation and was unable to promote protein-protein interaction with half-FRT sites. The conservation of three residues in all members of the integrase family of site-specific recombinases (His305, Arg308, Tyr343 in FLP) implies a common mechanism of recombination. The conservation of arginine 191 and the properties of the FLP-R191K mutant protein suggest that this arginine also plays an important role in the mechanism of FLP-mediated site-specific recombination.  相似文献   

8.
Identification of the DNA-binding domain of the FLP recombinase   总被引:6,自引:0,他引:6  
We have subjected the FLP protein of the 2-micron plasmid to partial proteolysis by proteinase K and have found that FLP can be digested into two major proteinase K-resistant peptides of 21 and 13 kDa, respectively. The 21-kDa peptide contains a site-specific DNA-binding domain that binds to the FLP recognition target (FRT) site with an affinity similar to that observed for the native FLP protein. This peptide can induce DNA bending upon binding to a DNA fragment containing the FRT site, but the angle of the bend (approximately 24 degrees) is smaller in magnitude than that induced by the native FLP protein (60 degrees). The additional DNA bending induced by the interaction between two native FLP molecules bound to the FRT site is not observed with the 21-kDa DNA-binding peptide. Amino-terminal sequencing has been used to map this peptide to an internal region of FLP that begins at residue Leu-148. It is likely that the DNA-binding peptide includes the catalytic site of the FLP protein.  相似文献   

9.
10.
The 2-micron plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombinase (FLP) that promotes inversion across a unique site contained in each of the 599-base-pair inverted repeats of the plasmid. We have studied the topological changes generated in supercoiled substrates after exposure to the purified FLP protein in vitro. When a supercoiled substrate bearing two FLP target sequences in inverse orientation is treated with FLP, the products are multiply knotted structures that arise as a result of random entrapment of interdomainal supercoils. Likewise, a supercoiled substrate bearing two target sequences in direct orientation yields multiply interlocked catenanes as the product. Both types of substrate seem to be able to undergo repeated rounds of recombination that result in products of further complexity. The FLP protein also acts as a site-specific topoisomerase during the recombination reaction.  相似文献   

11.
The FLP recombinase, encoded by the 2 micron plasmid of Saccharomyces cerevisiae, promotes efficient recombination in vivo and in vitro between its specific target sites (FLP sites). It was previously determined that FLP interacts with DNA sequences within its target site (B. J. Andrews, G. A. Proteau, L. G. Beatty, and P. D. Sadowski. Cell 40:795-803, 1985), generates a single-stranded break on both DNA strands within the FLP site, and remains covalently attached to the 3' end of each break. We now show that the FLP protein is bound to the 3' side of each break by an O-phosphotyrosyl residue and that it appears that the same tyrosyl residue(s) is used to attach to either DNA strand within the FLP site.  相似文献   

12.
Liang R  Liu J 《BioTechniques》2008,44(2):209-10, 212-5
A conditional knockout-rescue system was developed to construct an in-frame deletion strain ofEscherichia coli essential genes. The target was flanked with marker genes and FRT (FLP recognition target) sites, and a plasmid containing arabinose-induced FLP recombinase was transformed. After arabinose induction, cells could survive only when target protein activity was provided in trans. We selected three essential genes as targets, yaeT, fabZ, and dnaE, which are components of the complex eight-gene regulon yaeT-hlpA-lpxD-fabZ-lpxA-1pxB-rnhB-dnaE. Deletion of these three genes exhibit no polar effects on their adjacent genes in terms of cell viability, meaning that this system not only allows for the simplified study of protein interactions and homolog screening in other organisms, but also facilitates the null mutant construction of essential genes.  相似文献   

13.
We have studied the mechanism of reaction of the FLP protein of the yeast 2-micron plasmid on linear substrates. The products of the reaction are dependent upon the concentration of FLP protein. At low concentrations of FLP, products resulting from intramolecular recombination between two FLP target sites accumulate. At higher concentrations of FLP, intermolecular recombination results in the accumulation of products which are larger than the starting substrate. At higher concentrations still, FLP-promoted recombination is inhibited. Potassium chloride (0.15 M) inhibits the intermolecular reaction and also prevents the inhibition of FLP-mediated recombination caused by high concentrations of FLP protein. We present a model that explains these findings.  相似文献   

14.
15.
Plant transformation based on random integration of foreign DNA often generates complex integration structures. Precision in the integration process is necessary to ensure the formation of full-length, single-copy integration. Site-specific recombination systems are versatile tools for precise genomic manipulations such as DNA excision, inversion or integration. The yeast FLP-FRT recombination system has been widely used for DNA excision in higher plants. Here, we report the use of FLP-FRT system for efficient targeting of foreign gene into the engineered genomic site in rice. The transgene vector containing a pair of directly oriented FRT sites was introduced by particle bombardment into the cells containing the target locus. FLP activity generated by the co-bombarded FLP gene efficiently separated the transgene construct from the vector-backbone and integrated the backbone-free construct into the target site. Strong FLP activity, derived from the enhanced FLP protein, FLPe, was important for the successful site-specific integration (SSI). The majority of the transgenic events contained a precise integration and expressed the transgene. Interestingly, each transgenic event lacked the co-bombarded FLPe gene, suggesting reversion of the integration structure in the presence of the constitutive FLPe expression. Progeny of the precise transgenic lines inherited the stable SSI locus and expressed the transgene. This work demonstrates the application of FLP-FRT system for site-specific gene integration in plants using rice as a model.  相似文献   

16.
The FLP recombinase is encoded by the yeast plasmid 2 microns circle and catalyses a site-specific recombination reaction that results in inversion of a segment of the 2 micron plasmid. We describe a method for the isolation of inactivating mutations in the FLP gene. The analysis of the recombination and binding activity of defective FLP proteins in vitro resulted in the identification of two classes of mutations: those that completely abolish FLP function by interfering with DNA binding and others that block recombination after the binding step. We have shown that FLP-mediated recombination is accompanied by bending of the DNA target and that mutations in the FLP recombinase that block bending also eliminate recombination.  相似文献   

17.
The 2-micron plasmid of the yeast Saccharomyces cerevisiae codes for a site-specific recombinase ('FLP') that efficiently catalyses recombination across the plasmid's two 599 bp repeats both in vivo and in vitro. We have used the partially purified FLP protein to define the minimal duplex DNA sequence required for intra- and intermolecular recombination in vitro. Previous DNase footprinting experiments had shown that FLP protected 50 bp of DNA around the recombination site. We made BAL31 deletions and synthetic FLP sites to show that the minimal length of the site that was able to recombine with a wild-type site was 22 bp. The site consists of two 7 bp inverted repeats surrounding an 8 bp core region. We also showed that the deleted sites recombined with themselves and that one of three 13 bp repeated elements within the FLP target sequence was not necessary for efficient recombination in vitro. Mutants lacking this redundant 13 bp element required a lower amount of FLP recombinase to achieve maximal yield of recombination than the wild type site. Finally, we discuss the structure of the FLP site in relation to the proposed function of FLP recombination in copy number amplification of the 2-micron plasmid in vivo.  相似文献   

18.
19.
The FLP protein of the 2 microns plasmid of Saccharomyces cerevisiae promotes conservative site-specific recombination between DNA sequences that contain the FLP recognition target (FRT). FLP binds to each of the three 13 base pair symmetry elements in the FRT site in a site-specific manner. We have probed both major and minor groove contacts of FLP using dimethyl sulphate, monoacetyl-4-hydroxyaminoquinoline 1-oxide and potassium permanganate and find that the protein displays extensive interactions with residues of both the major and minor grooves of 10 base pairs of each symmetry element. We find no evidence that the FRT site assumes a single-stranded conformation upon FLP binding.  相似文献   

20.
The FLP recombinase of yeast catalyses site-specific recombination between repeated FLP recombinase target (FRT) elements in yeast and in heterologous system (Escherichia coli, Drosophila, mosquito and cultured mammalian cells). In this report, it is shown that transient FLP recombinase expression can recombine and activate an extrachromosomal silent reporter gene following coinjection into fertilized one-cell mouse eggs. Furthermore, it is demonstrated that introduction of a FLP-recombinase expression vector into transgenic one-cell fertilized mouse eggs induces a recombination event at a chromosomal FRT target locus. The resulting event occured at the one-cell stage and deleted a chromosomal tandem array of a FRT containinglacZ expression cassette down to one or two copies. These results demonstrate that the FLP recombinase can be utilized to manipulate the genome of transgenic animals and suggest that FLP recombinase-mediated plasmid-to-chromosome targeting is feasible in microinjected eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号