首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluxes of diatoms in the Dona Paula Bay, west coast of India   总被引:2,自引:0,他引:2  
Sediment traps were deployed at a station in the Dona PaulaBay to collect sedimenting particles at weekly intervals fromNovember to May during 1995–1997. Sedimented particleswere analysed for total diatom flux, chlorophyll a (Chl a) andparticulate organic carbon (POC). The highest diatom flux wasrecorded in April–May for both the years. Fluxes of diatomsvaried from0.6 x 104 cells m–2 day–1 (November 1995)to 121.47 x 104 cells m–2 day–1 (December 1996).In all, 19 diatom genera were identified in the sedimented material.Navicula, Nitzschia, Pleurosigma, Licmophora, Coscinodiscus,Rhizosolenia and Surirella were the most abundant genera inthe sedimented material throughout the sampling period. Meanflux of POC and diatom carbon was 251 and 0.39 mg C m–2day–1, respectively. The diatom carbon accounted for 0.15%of the POC flux. Mass flux of diatoms showed significant negativecorrelation with the concentration of nitrate and phosphate.This suggests that the nutrient concentration played an importantrole in influencing the sedimentation of diatoms at this coastalstation.  相似文献   

2.
Microzooplankton grazing and community structure were investigatedin the austral summer of 1995 during a Southern Ocean Drogueand Ocean Flux Study (SODOFS) at the ice-edge zone of the LazarevSea. Grazing was estimated at the surface chlorophyll maximum(5–10 m) by employing the sequential dilution technique.Chlorophyll a concentrations were dominated by chainformingmicrophytoplankton (>20 µm) of the genera Chaetocerosand Nitzschia. Microzooplankton were numerically dominated byaloricate ciliates and dinoflagellates (Protoperidinium sp.,Amphisoleta sp. and Gymnodinium sp.). Instantaneous growth ratesof nanophytoplankton (<20 µm) varied between 0.019and 0.080 day–1, equivalent to between 0.03 and 0.12 chlorophylldoublings day–1. Instantaneous grazing rates of microzooplanktonon nanophytoplankton varied from 0.012 to 0.052 day–1.This corresponds to a nanophytoplankton daily loss of between1.3 and 7.0% (mean = 3.76%) of the initial standing stock, andbetween 45 and 97% (mean = 70.37%) of the daily potential production.Growth rates of microphytoplankton (>20 µm) were lower,varying between 0.011 and 0.070 day–1, equivalent to 0.015–0.097chlorophyll doublings day–1. At only three of the 10 stationsdid grazing by microzooplankton result in a decrease in microphytoplanktonconcentration. At these stations instantaneous grazing ratesof microzooplankton on microphytoplankton ranged between 0.009and 0.015 day–1, equivalent to a daily loss of <1.56%(mean = 1.11%) of initial standing stock and <40% (mean =28.55%) of the potential production. Time series grazing experimentsconducted at 6 h intervals did not show any diel patterns ofgrazing by microzooplankton. Our data show that microzooplanktongrazing at the ice edge were not sufficient to prevent chlorophylla accumulation in regions dominated by rnicrophytoplankton.Here, the major biological routes for the uptake of carbon thereforeappear to be grazing by metazoans or the sedimentation of phytoplanktoncells. Under these conditions, the biological pump will be relativelyefficient in the drawdown of atmospheric CO2.  相似文献   

3.
We tested the hypothesis that the growth rate of Anabaena circinalis,under diurnally stratified conditions, would increase as flotationvelocity increased owing to higher light availability. An insitu experiment compared the growth of diurnally stratifiedpopulations of A. circinalis with flotation velocities of 0.5and 1.0 m h–1, with neutrally buoyant populations thatwere exposed to either mixed or persistently stratified conditions.The experiment was conducted in the turbid lower Murray Riverin South Australia (vertical attenuation coefficient = 4.52± 0.36 m–1). To represent the mixing patterns,A. circinalis was contained in diffusion chambers that weremoved to different positions in the water column throughoutthe day. Diurnal populations with flotation velocities of 1.0and 0.5 m h–1 grew at 0.23 ± 0.01 and 0.15 ±0.01 day–1, respectively. Mixed populations grew at 0.19± 0.01 day–1, whereas persistently stratified populationsgrew at 0.43 ± 0.01 day–1. Results were used toextend a model that predicts growth of A. circinalis when exposedto the different mixing patterns. The model showed that bloomsare unlikely to be formed when the period of diurnal stratificationis <1 week, regardless of flotation velocity. When the diurnallystratified period is >1 week, flotation velocity is importantand a bloom may form depending on values assigned to the growthperiod and maximum mixed depth (Zm).  相似文献   

4.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

5.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

6.
The growth of heterotrophic nanoflagellates (HNF) in mesotrophicLake Constance was measured in situ during a 13 month period.Experiments were conducted with 10 µm pre-filtered lakewater incubated in diffusion chambers at 3 m water depth atthe sampling location for 24 h. Growth rates were calculatedfrom changes in cell numbers occurring during the period ofincubation. Growth rates of all dominant taxa showed pronouncedseasonal variation (–0.13 to 1.76 day–1 and weregenerally highest in summer at high water temperatures. In situgrowth rates were well below maximum growth rates known forthe respective and similar species from laboratory experiments.While water temperature was a key parameter positively relatedto the growth of all HNF species, the effect of various potentialfood items was taxon specific and less clear. Bacterial abundancewas equally important as temperature for growth in the smallbactenvorous Spumella sp., but was insignificant for growthrates of the larger omnivorous Kathablepharis sp. In Spuniellasp., 84% of the observed seasonal variation of its growth ratecould be explained by temperature and bacterial food supply.Based on these results, a multiple linear regression equationwith temperature and bacterial concentration as dependent variableswas calculated for the growth rate of Spumella. Taxon-specificproduction rates were derived from growth rates and averagebiomass of these two species, and compared to total HNF productionestimated from previously measured community growth rates andbiomass in Lake Constance. Production peaks of Spumella sp.and Kathablepharis sp. alternated seasonally. Total HINF productionranged from –0.01 to 10 mg C m–3 day–1. Theaverage seasonal production varied between 1.4 and 33 mg C m–3day–1 over 6 consecutive years. These small protozoa thuscontribute a substantial amount to total zooplankton productionin Lake Constance.  相似文献   

7.
Growth rates, ingestion rates and grazer yields (grazer volumeproduced/prey volume consumed) were measured for six protozoanspecies (ciliates: Favella sp., Strombidinopsis acuminatum,Uronema sp.; heterotrophic dinoflagellates: Amphidinium sp.,Gymnodinium sp., Noctiluca scintillans) in laboratory batchculture experiments. Comparative growth data indicate that theprymnesiophyte Isochrysis galbana, the prasinophyte Mantoniellasquamata, two cryptophyte species and several autotrophic dinoflagellatespecies were suitable foods for these grazers. When grown onoptimized diets at 13C, maximum ciliate growth rates (range0.77–1.01 day–1 uniformly exceeded maximum heterotrophicdioflagellate growth rates (range 0.41–0.48 day–1).A compilation of published data demonstrates that this growthrate difference persists across a range of ciliate and dinoflagellatetaxa and cell sizes. Comparison of volume-specific ingestionrates and yields for the six species studied here showed thatthere was no single explanation for this growth rate disparity.Heterotrophic dinoflagellates exhibited both low ingestion ratesand, in one case, low yields; ciliates were able to achievehigher growth rates via either higher ingestion rates or higheryields, depending on ciliate species. Volume yield increasedover time throughout the exponential growth phase in nearlyall experiments, suggesting variation in response to changingfood concentrations or long-term acclimation to culture conditions.Higher maximum ciliate growth rates mean that these grazershave the potential to exercise tighter control over incipientblooms of their prey than do heterotrophic dinoflagellates.  相似文献   

8.
The fecundity and somatic growth rates of Calanus agulhensisand Calanoides carinatus, the dominant large calanoid copepodsin the southern Benguela upwelling system, as well as the fecundityof several other common copepods, were measured between Septemberand March of 1993/94 and 1994/95. Mean egg production of mostcopepods was low at >30 eggs female-1 day-1 {Calanoides carinatus23.7, Calanus agulhensis 19.0, Neocalanus tonsus 16.1 and Rhincalanusnasutus 26.1), whereas the mean fecundity of Centropages brachiatuswas significantly greater (83.6 eggs female–1 day-1).This study also presents the first comprehensive field estimatesof the fecundity of Nanno-calanus minor (mean: 26.1 eggs female–1day–1, range: 0.0–96.2 eggs female–1 day–1)and of somatic growth of N6 and all copepodite stages of Calanoidescarinatus (decreasing from 0.58 day–1 for N6 to 0.04 day–1for C5). Somatic growth rates of Calanus agulhensis also declinedwith age: from 0.57 day1 for N6 to 0.09 day1 for C5. Data ongrowth rates were used to assess the relative importance offood [as measured by total chlorophyll (Chi) a concentration],phytoplankton cell size (proportion of cells >10 µm)and temperature to the growth of copepods. Multiple regressionresults suggested that fecundity and somatic growth rates werepositively related to both Chi a concentration and phytoplanktoncell size, but not to temperature. Although it was not possibleto separate the effects of Chi a concentration and phytoplanktoncell size, data from previous laboratory experiments suggestthat copepod growth is not limited by small cells per se, butby the low Chi a concentrations that are associated with theseparticles in the field. Despite growth not being directly relatedto temperature, a dome-shaped relationship was evident in somespecies, with slower growth rates at cool (<13°C) andwarm (>18°C) temperatures. The shape of this relationshipmirrors that of Chi a versus temperature, where poor Chi a concentrationsare associated with cool and warm temperatures. It is concludedthat the effect of food limitation on growth of copepods outweighsthat of temperature in the southern Benguela region. Sourcesof variability in relationships between growth and Chi a concentrationare discussed.  相似文献   

9.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

10.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

11.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

12.
The sedimentary flux of phytoplankton was measured using sedimenttraps in a shallow hypertrophic lake (Lake Kasumigaura), whereMicrocystis bloomed, from June to November 1983 The sedimenttraps were set at 0.5, 1.5 and 3.0 m depth in Takahamairi Bay(3.5 m depth). Microcystis spp. (including M.aerugmosa and M.viridis)in the traps were rare until early August, but increased thereafter.Sinking rates of Microcystis were 0.0045, 0.020 and 0.24 m day–1in June–August, September and October respectively, whichwere far lower than those of Melosira (0.2–1.7 m day–1)and Syncdra (0.2–1.0 m day–1). The total sedimentaryfluxes of POC and that of algal carbon during the study periodwere 283.2 and 96.7 gC m–2 which were 59.5% and 20.3%of the gross primary production (475.8 gC m–2) respectively.The sedimentary flux of living algae measured by algal countswas large in June but small in August and September. On theother hand, the flux of detritus obtained by subtracting totalalgal carbon from POC was small in June and July but large inAugust and September. Therefore diatoms, which appeared mostlyin June, tended to sink as live algae, while Microcystis sankas detritus after being decomposed or consumed in the waterIt was concluded from the results of carbon budget calculationsand the respiration rate of the 1- to 20-µm fraction thatthe activity of decomposers or consumers increased greatly inthe short period at the end of the bloom of Microcystis.  相似文献   

13.
Histiobalantium sp. was found regularly in the pelagic zoneof Lake Constance, FRG, over five annual cycles. Maxima of upto 6400 cells l–1 were recorded in late summer, with similarnumbers in the 0–8 and 8–20 m depth intervals. Onan annual average, the population accounted for 10–17%of the total biomass of planktonic ciliates. In the laboratory,Histiobalantium grew well on a diet of the cryptophyte Rhodomonassp. Maximum growth rates obtained in batch cultures were 0.21and 0.33 day–11 at 9 and 18°C, respectively. In situexperiments using diffusion chambers yielded positive growthrates in autumn and winter. The highest values recorded at theambient temperatures 5, 14 and 17°C were 0.17, 0.32 and0.40 day–1, respectively. Comparing these results withthe different seasonal distributions and higher measured growthrates of other ciliates from Lake Constance, we conclude thatHistiobalantium is a superior competitor at relatively low algalfood concentrations. 2Present address: Fisheries & Oceans Canada, 4160 MarineDrive, West Vancouver, BC, V7V 1N6, Canada  相似文献   

14.
Red tides are conspicuous in the upwelling system of Galicia(NW Iberian Peninsula). At present, there are conflicting hypothesesabout the generation site of these phytoplankton assemblages.It is interesting to know whether the rias can be sites of redtide formation or if they act only as accumulation sites ofpopulations advected from shelf waters. A study in the Ra deVigo, carried out during late September 1990, showed the developmentof a red tide assemblage, composed of Alexandrium affinis, Ceraiiumfusus and Gymnodinium catenaium, during a 2 week upwelling-downwellingcycle. Growth occurred at the bottom of the thermocline-topof the nutricline. Above this assemblage, a diatom assemblage(large diatoms) was blooming. Prior to the formation of thered tide, a subsurface chlorophyll maximum made up of smalldiatoms (Nilzschia f. seriaia, Chaeloceros socialis), smallflagellates (<30 µm) and small gymnodinid forms (<30µm) was observed. In the nutrient-depleted upper layer,several autotrophic and large heterotrophic dinoflagellatesdominated. It is suggested that the ratio between the velocityof upward water movement and the depth of the stratified upperlayer (flushing rate, day–1) is the critical parameterwhich triggers active phytoplankton growth. It can be concludedthat upward water velocities of {small tilde}2.5 m day–1and a stratified upper layer of 10 m depth (flushing rate 0.25day–1) are the main physical constraints for red tidedevelopment.  相似文献   

15.
During the spring of 1994, we determined the factors responsiblefor the decline of the seasonal diatom bloom in the Gullmarfjord, on the west coast of Sweden. Four species constituted>75% of the biomass—Detonula confervacea, Chaetocerosdiadema, Skeletonema costatum and Thalassiosira nordenskioeldii—reachingconcentrations of 4900, 350, 8200 and 270 cells ml–1,respectively. Growth of phytoplankton was exponential (growthrate = 0.12 day–1) from 3 to 21 March, after which a galewith winds >15 m s–1 caused massive aggregation. Amaximum of 130 p.p.m. (v/v) of marine snow aggregates was observedby in situ video at the peak of the bloom. Critical concentrations(Jackson, Deep-Sea Res., 37, 1197–1211, 1990) were similarto observed showing that coagulation theory could explain thesudden decline of the bloom. The heterotrophic dinoflagellateGyrodinium cf. spirale increased exponentially after the peakof the bloom with maximum (temperature-adjusted) growth rates.After the rapid aggregation and sedimentation of the bloom,they were able to control any further growth of diatoms. Nitrateand silicate were never depleted, but phosphate may have beenlimiting by the end of the study period. We conclude that massaggregation during a gale marked the end of the bloom, and thatintense grazing by heterotrophic dinoflagellates prevented anysubsequent increase of diatoms.  相似文献   

16.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

17.
Measurements of hydrography, chlorophyll, moulting rates ofjuvenile copepods and egg production rates of adult female copepodswere made at eight stations along a transect across the Skagerrak.The goals of the study were to determine (i) if there were correlationsbetween spatial variations in hydrography, phytoplankton andcopepod production rates, (ii) if copepod egg production rateswere correlated with juvenile growth rates, and (iii) if therewas evidence of food-niche separation among co-occumng femalecopepods The 200 km wide Skagerrak had a stratified water columnin the center and a mixed water column along the margins. Suchspatial variations should lead to a dominance of small phytoplanktoncells in the center and large cells along the margins; however,during our study blooms of Gyrodinium aureolum and Ceratium(three species) masked any locally driven differences in cellsize: 50% of chla was >11 µm, 5% in the 11–50µm fraction and 45% <50 µm. averaged for allstations. Chlorophyll ranged from 0.2 to 2.5 µg l–1at most depths and stations. Specific growth rates of copepodsaveraged 0.10 day–1 for adult females and 0.27 day–1for juveniles The latter is similar to maximum rates known fromlaboratory studies, thus were probably not food-limited. Eggproduction rates were food-limited with the degree of limitationvarying among species: 75% of maximum for Centropages typicus, 50% for Calanus finmarchicus, 30% for Paracalanus parvus and 15% for Acartia longiremis and Temora longicornis. Thedegree of limitation was unrelated to female body size suggestingfood-niche separation among adults. Copepod production, summedover all species, ranged from 3 to 8 mg carbon m–3day–1and averaged 4.6 mg carbon m–1 day–1. Egg productionaccounted for 25% of the total.  相似文献   

18.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

19.
In situ filtration responses of Daphnia galeata to changes in food quality   总被引:1,自引:0,他引:1  
In the stoichiometric study of phyto–zooplankton interactions,a controversy exists about how Daphnia species regulate theirfeeding rate when submitted to low-quality food (i.e. high dietarycarbon:phosphorus [C:P] ratio). In this study, we gathered dataover 3 years on in situ clearance rates of a Daphnia galeatapopulation, by conducting grazing experiments from April 1998to October 2000 in the Esch-sur-Sûre reservoir (Grand-Duchyof Luxembourg). Observed clearance rates (2.5–13.5 mLindividual–1 day–1, mean 7.0 mL individual–1day–1) were correlated with population and environmentalvariables. Mean body size of Daphnia individuals was the bestpredictor of clearance rate (r2 = 0.639), followed by watertemperature (r2 = 0.262) and P concentration in the seston (r2  相似文献   

20.
Food size selectivity was examined in Artemia franciscana metanaupliiat three different developmental stages. Clearance rates weredetermined in short-term experiments either by measuring thedecrease in concentration of live particles and plastic beads,or by measuring the radioactivity accumulated in animals thatgrazed 14C-labelled live particles. The maximum clearance rateofA.franciscana metanauplii increased during development andwas measured at 50–63 µl ind.–1 h–1,254 µl ind.–1 h–1 and 1.48–2.10 ml ind.–1h–1 in 2-, 4- and 7-day-old metanauplii, respectively.A preference for particles with a diameter of 4–8 µmwas observed at all three developmental stages. The abilityof A.franciscana metanauplii to graze bacterial particles wasalso demonstrated, although the efficiency in grazing such smallparticles was low compared to microalgae (28, 20 and 9% of themaximum clearance rate in 2-, 4- and 7-day-old metanauplii,respectively). Electron microscopy showed that the inter-setulardistance in antennae and thoracopods was 0.20 ± 0.07,0.16 ± 0.05 and 0.18 ± 0.04 µm in 2-, 4-and 7-day-old metanauplii, respectively, and accordingly independentof stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号