首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Walter J.  Bock 《Ibis》1972,114(1):61-78
Ciridops possesses a tubular tongue with a fringed tip and lateral sides. Closure of the tube is by overlap of the lateral fringes.
The tongue skeleton possesses an elongated basihyale, parallel paraglossalia with broad, rounded posterior processes and a slight concavity on the dorsolateral surface of the ceratobranchiale.
All the tongue muscles could be described, although some had been damaged. The M. hypoglossus anterior is absent. The M. ceratoglossus and the M. hypoglossus obliquus are large, the latter muscle inserts completely on the basihyale. A newly discovered muscle, the M. thyreohyoideus superior, is described.
The glottal muscles are described, and their actions in opening and closing the glottis are outlined.
Comparison of Ciridops (Drepanidinae) and Loxops (Psittirostrinae) suggests that the Drepanididae are monophyletic. The closest resemblance in morphology of the tongue apparatus is with the cardueline finches, not with the "coerebids".  相似文献   

2.
Neural crest cells from brachial levels of the neural tube populate the ventral roots, spinal nerves, and peripheral nerves of the chick forelimb where they give rise to Schwann cells. The distribution of neural crest cells in the developing forelimb was examined using homotopic and heterotopic chick-quail chimeras to label neural crest cells from subsets of the brachial spinal segments. Neural crest cells from particular regions of the spinal cord populated ventral roots and spinal nerves adjacent to or immediately posterior to the graft. Crest cells also populated the brachial plexus in accord with their segmental origins. In the forelimb, neural crest cells populated muscle nerves with anterior brachial spinal segments populating nerves to anterior musculature of the forelimb and posterior brachial spinal segments populating nerves to posterior musculature. Similar patterns were seen following both homotopic and heterotopic transplantation. In both types of grafts, the distribution of neural crest cells largely matched the sensory and motor projection pattern from the same spinal segmental level. This suggests that neural crest-derived Schwann cells from a particular spinal segment may use sensory and motor fibers emerging from the same segmental level as substrates to guide their migration into the periphery.  相似文献   

3.
Plethodontid salamanders of the genus Hydromantes capture prey using the most extreme tongue projection among salamanders, and can shoot the tongue a distance of 80% of body length in less than 20?msec. The tongue skeleton is projected from the body via an elastic-recoil mechanism that decouples muscle contraction from tongue projection, amplifying muscle power tenfold. We tested the hypothesis that the elastic-recoil mechanism also endows tongue projection with low thermal dependence by examining the kinematics and dynamics of tongue projection in Hydromantes platycephalus over a range of body temperatures (2-24°C). We found that H. platycephalus maintained tongue-projection performance over the tested temperature range and that tongue projection showed thermal independence (Q(10) values of 0.94-1.04) of all performance parameters including projection distance, average velocity, and peak instantaneous values of velocity, acceleration, and power. Nonelastic, muscle-powered tongue retraction, in contrast, responded to temperature changes significantly differently than elastic tongue projection; performance parameters of retraction displayed thermal dependence typical of muscle-powered movement (Q(10) values of 1.63-4.97). These results reveal that the elastic-recoil mechanism liberates tongue projection from the effects of temperature on muscle contractile rates. We suggest that relative thermal independence is a general characteristic of elastic-recoil mechanisms and may promote the evolution of these mechanisms in ectothermic animals.  相似文献   

4.
In the complex feeding apparatus of birds, the tongue muscles also play an important role like the jaw muscles. Among the passerine birds, the tongue muscles exhibit greater structural uniformity than the jaw muscles. The elaborate system of extrinsic tongue musculature brings about all necessary movements of the tongue. The intrinsic tongue musculature in all the birds studied is extremely weak and reduced. The principal tongue muscles are better developed in Turdoides and Copsychus than in the other birds. However, in Orthotomus, Anthus, Dicrurus, and Merops, some of the tongue muscles are quite well developed, perhaps compensating for the deficiencies of the other muscles. The origin of M. branchiomandibularis posterior from the outer mandibular ramus in Orthotomus, Dicrurus, and Merops is remarkable, but its occurrence may not be unusual among the passerine birds. Some variations are also observed in the origin and insertion of M. genioglossus in Turdoides, Copsychus, and Anthus. The correlations between the structures and functions of the tongue muscles are not always possible without considering the synergistic actions of the other muscles.  相似文献   

5.
M Iida  I Yoshioka  H Muto 《Acta anatomica》1985,121(4):237-244
The three-dimensional and surface structures of the simple conical papillae of the rat tongue have been demonstrated with scanning electron microscopy. The papillary projection was organized into the anterior, posterior and central core cell populations, whereas the basal region of the papilla which consisted of circularly arranged cells showed no differentiation into three autonomic cell populations. It is considered that the anterior and posterior cell populations around the central core tend to be mutually attached at the bilateral sides, and that the posterior and core cell contacts are rather close than the anterior one. The anterior papillary cells showed relatively smooth surface with little micropits and without microridges. The reticular microridges on the basal cell surface of the posterior papillary cells appear to later develop the micropits and linear microridges on the tip cell surface. These suggest that the anterior cell surface is more highly keratinized than the posterior one. The microridges or micropits on the outer cell surface and the microprojections on the inner cell surface organizing filiform papilla are considered to be the structures for the purpose of cell adhesion.  相似文献   

6.
A recently presented model of tongue projection dynamics is used to generate a series of predictions concerning morphologies to be expected under selection for increased distance of projection, increased speed of projection, and increased directional versatility. A general understanding of biomechanical events and the model are used as points of departure for making specific predictions concerning details of structure in skeletal, muscular and connective tissue components of the tongue and associated structures. Comparative methods are used to examine these predictions in the genera of plethodontid salamanders. These salamanders are known to project their tongues to different degrees, and this knowledge is used to test the hypotheses concerning morphological specialization. Three distinct groups of plethodontid salamanders have evolved specializations for long distance projection, and these genera differ from one another in important ways in respect to specific character complexes. For example, the tropical genera and Hydromantes use CBII as the major force transmission element in the skeleton, while Eurycea and its allies use CBI in this role. Hydromantes differs from both in having a uniquely proportioned and structured hyobranchial skeleton and associated musculature. Less extreme specializations for tongue projection are found in different combinations in three other groups. Finally, two distinct groups of generalized species having only limited tongue projection capabilities are recognized, each having a unique complex of inter-related features. Each of these eight groups is recognized and characterized as a functional mode, and hypotheses concerning the biomechanical meaning of the character complexes of each are formulated.  相似文献   

7.
WALTER J. BOCK 《Ibis》1978,120(4):467-479
Melamprosops phaeosoma has a thick straight tongue with an anterior spoon-like trough, but without any indication of a tube. Its hyoid skeleton has an elongated, flattened basihyale, stout parallel paraglossalia and a concavity along the dorsal surface of the ceratobranchiale. All the tongue muscles could be dissected but the superficial M. mylohyoideus and M. serpihyoideus were too damaged to figure and describe. The M. ceratoglossus and the M. hypoglossus obliquus are large; the latter muscle inserts mainly on the basihyale and ceratobranchiale, but a small number of fibres pass beneath the basihylale. The M. hypoglossus anterior is absent. The morphology of the tongue apparatus of Melamprosops is very similar to that of Ciridops and of Loxops and supports placement of Melamprosops in the Drepanididae. Further it suggests that Melamprosops evolved from an ancestor with a tubular tongue, supporting the suggestion that it evolved from Loxops.  相似文献   

8.
A skeletal neomorph – the preglossale – is described from the tip of the tongue in Passer. This medial unpaired skeletal element is a dorsally open trough articulating with the anterior tips of the paraglossalia and supporting the heavy epidermal pad of the seed-cup. The large paired Mm. hypoglossus anterior originate from the posterior half of the preglossale and insert onto the anterior bodies of the paired paraglossalia; they serve to depress the anterior portion of the preglossale. A regular pattern of dermal papillae is present in the seed-cup; these are arranged in about 20 rows of six to 8 papillae per row. Each papilla contains a series of Merkel cells and associated nerve endings (touch receptors). The seed-cup serves to orient and hold the seed in place while it is being husked; the battery of tactile receptors provides information on the position of the seed on the tongue. The preglossale serves to support the seed-cup and to change its shape – the curvature of the dorsal surface – as it is depressed relative to the paraglossalia. The paraglossale and associated features of the seed-cup in Passer would provide a valuable preparation to study a diversity of problems such as developmental interactions between endomesodermal and ecto-mesenchymal skeletal features, the ontogenetical development of Merkel cells, and the sensory physiology of Merkel cells and their associated nerve endings as tactile corpuscles.  相似文献   

9.
Tongue musculature in 24 genera of snakes was examined histologically. In all snakes, the tongue is composed of a few main groups of muscles. The M. hyoglossus is a paired bundle in the center of the tongue. The posterior regions of the tongue possess musculature that surrounds these bundles and is responsible for protrusion. Anterior tongue regions contain hyoglossal bundles, dorsal longitudinal muscle bundles and vertical and transverse bundles, which are perpendicular to the long axis of the tongue. The interaction of the longitudinal with the vertical and horizontal muscles is responsible for bending during tongue flicking. Despite general similarities, distinct patterns of intrinsic tongue musculature characterize each infraorder of snakes. The Henophidia are primitive; the Scolecophidia and Caenophidia are each distinguished by derived characters. These derived characters support hypotheses that these latter taxa are each monophyletic. Cylindrophis (Anilioidea) is in some characters intermediate between Booidea and Colubroidea. The condition in the Booidea resembles the lizard condition; however, no synapomorphies of tongue musculature confirm a relationship with any specific lizard family. Although the pattern of colubroids appears to be the most biomechanically specialized, as yet no behavioral or performance feature has been identified to distinguish them from other snakes.  相似文献   

10.
S Sekiya 《Acta anatomica》1991,140(3):213-223
On the deep anterior surface of the human soleus muscle a bipenniform part is found, the portio anterior, which is innervated by the ramus anterior. This part and the innervation pattern are morphological characteristics peculiar to man. In six human soleus muscles plus three anomalies, the intramuscular distribution of the nerves supplying these muscles was macroscopically examined. In the normal soleus muscles, the R. anterior supplied not only the portio anterior but also the portio posterior through several anastomoses with twigs of the R. posterior. In the soleus without the portio anterior, the R. anterior entered the muscle at the anterior surface and joined directly with the branches of the R. posterior. In the soleus with two bipenniform parts, one bipenniform part was supplied by the R. anterior, and the other by the R. posterior. The cross-sectional area of the total nerves supplying the muscle was 0.72 +/- 0.036 mm2 (n = 8). The areas of the R. posterior and the R. anterior were in inverse relation to each other. These findings suggest that the R. anterior became separated from the R. posterior. However, the endoperineurium fiber composition of the R. anterior appeared to consist of a few nerve fiber components different from those of the R. posterior.  相似文献   

11.
A cross-modal matching procedure was used, in twelve subjects,to evaluate regional differences in suprathreshold sensitivityof the oral cavity to electrogustometric stimulation. Stimulationof five loci on each side of the oral cavity was performed:tongue tip (one cm from the midline), anterior tongue side (2.5cm from tip on lateral margin), posterior tongue side (regionof the foliate papillae), posterior medial tongue (one cm frommidline on circumvallate papillae), and soft palate (one cmfrom midline, one cm above superior pole of anterior palatinearch). The tip of the tongue was significantly more sensitivethan the other areas to electric stimulation, as evidenced bythe slope and absolute position of the psychophysical powerfunctions. Strong correlations were observed in the sensitivitymeasures across tongue loci and between tongue and palate sides.No effects of subject gender or mouth side were found.  相似文献   

12.
The morphology of the tongue of agamid lizards is reviewed and discussed in the context of its functional and phylogenetic significance. It is shown that in several features, including the development of the central musculature of the tongue into a ring muscle and the presence of a genioglossus internus muscle in adults, the tongue in most agamids is derived relative to that in other squamates. In some features, such as the vertical connective tissue septa, agamids share primitive features with Sphenodon. Some conditions found in agamids are also found in anoline iguanids. Two genera, Uromastyx and Leiolepis, differ significantly from other agamids in intrinsic tongue musculature. The functional significance of the unique tongue morphology is that agamids utilize a different mechanism of tongue protrusion from that of other lizards. This mechanism involves the production of force against the lingual process, leading to an anterior slide of the tongue, and is detailed in this paper. Finally, I discuss the mechanical basis for the transformation series of tongue protrusion mechanisms from agamids to chamaeleonids. It is suggested that the mechanism of tongue protrusion in chamaeleonids is not unique, but is a highly derived state of the condition found in agamids.  相似文献   

13.
Contraction of the tongue musculature during speech and swallowing is associated with characteristic patterns of tissue deformation. In order to quantify local deformation (strain) in the human tongue, we used a non-invasive NMR tagging technique that represents tissue as discrete deforming elements. Subjects were studied with a fast gradient echo pulse sequence (TR,TE 2.3/0.8 ms, slice thickness 10 mm, and effective spatial resolution 1.3x1.3 mm). Individual elements were defined by selectively supersaturating bands of magnetic spills in resting tongue tissue along the antero-posterior and superior inferior directions of the mid-sagittal plane, resulting in a rectilinear square grid. Axial and shear strains relative to the rest condition were determined for each clement and represented by two-dimensional surface strain maps. During forward protrusion, the anterior tongue underwent positive antero posterior strain (elongation) (maximum 200%) and symmetrical negative medial lateral and superior inferior strain (contraction). During sagittal curl directed to the hard palate, the tongue exhibited positive asymmetrical antero posterior strain (maximum 160%) that increased radially as a function of distance from the center of curvature (r = 0.9216, p<0.0005), and commensurate negative strain in the medial lateral direction. Similarly, the magnitude of anterior posterior strain during left-directed tongue curl was proportional to the distance from the curved inner surface (r = O.8978, p<0.0005). We conclude that the regulation of tongue position for the motions studied was related to regional activation of the intrinsic lingual musculature.  相似文献   

14.
The innervation of the musculature of the tongue and the hyobranchial apparatus of caecilians has long been assumed to be simple and to exhibit little interspecific variation. A study of 14 genera representing all six families of caecilians demonstrates that general patterns of innervation by the trigeminal, facial, glossopharyngeal, and vagus nerves are similar across taxa but that the composition of the "hypoglossal" nerve is highly variable. Probably in all caecilians, spinal nerves 1 and 2 contribute to the hypoglossal. In addition, in certain taxa, an "occipital," the vagus, and/or spinal 3 appear to contribute fibers to the composition of the hypoglossal nerve. These patterns, the lengths of fusion of the contributing elements, and the branching patterns of the hypoglossal are assessed according to the currently accepted hypothesis of phylogenetic relationships of caecilians, and of amphibians. An hypothesis is proposed that limblessness and a simple tongue, with concomitant reduced complexity of innervation of muscles associated with limbs and the tongue, has released a constraint on pattern of innervation. As a consequence, a greater diversity and, in several taxa, greater complexity of neuroanatomical associations of nerve roots to form the hypoglossal are expressed.  相似文献   

15.
Kinnman  Erik 《Chemical senses》1987,12(4):621-630
Peripheral transganglionic transport of horseradish pcroxidase(HRP) and wheat germ agglutinin–horseradish peroxidaseconjugate (WGA–HRP) was used to label afferent fibersin the taste buds and lingual epithelium of the rat. Microinjectionsof the tracer were made in the brain stem central projectionarea of the afferent nerves to the tongue. Optimal labelingof nerve endings in the tongue was obtained when 2 µlof 20% HRP was injected into the brain stem and postinjectionsurvival times of 24–36 h were used. The distributionof single nerves was studied by using this tracing procedurein combination with strategic transections of the various afferentnerves supplying the tongue. Labeled nerve fibers from the combinedchorda tympani–lingual nerve were found in the epitheliumand in taste buds in the fungiform and anterior foliate papillaeof the anterior 3/4 of the tongue. Labeled nerve fibers in theepithelium of the anterior 2/3 of the tongue but none in tastebuds were found when the lingual nerve alone was studied, althoughnumerous perigeminal fibers were found. The glossopharyngealnerve was found to innervate die posterior 1/4 of the tongueepithelium including the taste buds of the circumvallate papillae.The glossopharyngeal nerve on one side was found to innervatethe taste buds on both sides of the midline. The results showthat this tracing procedure can be a useful supplement to othermethods for studying afferent nerves in the tongue.  相似文献   

16.
Two new genera of lycodine zoarcid fish, Santelmoa and Bentartia, and two new species, Santelmoa carmenae and Bentartia cinerea, are described from 13 specimens collected from the Gerlache Strait, Southern Ocean, at 1,056-m depth. Santelmoa can be distinguished from all other lycodine genera by the combination of the following characters: anterior portion of frontals fused; scapular foramen open; ceratohyal–epihyal articulation interdigitating; cranium narrowed; supratemporal commissure and occipital pores absent; intercalar reaching the prootic; parasphenoid wing well developed; palatal arch well developed; posterior hyomandibular ramus short; post-temporal ventral ramus well developed; six branchiostegal rays; vertebrae asymmetrical; pelvic fin rays ensheathed; scales, lateral line, pyloric caeca, palatine and vomerine teeth present. Bentartia differs from the remaining lycodine genera by the following combination of characters: basioccipital and exoccipitals fused; supraoccipital–exoccipital articulation broadly contacting; ceratohyal–epihyal articulation interdigitating; post-temporal ventral ramus weak; two posterior nasal pores; cranium narrowed; supratemporal commissure and occipital pores absent; intercalar set posteriorly; palatal arch well developed; posterior hyomandibular ramus not elongate; parasphenoid wing high; six branchiostegal rays; vertebrae asymmetrical; pelvic fin rays ensheathed; scales, lateral line, pyloric caeca, palatine and vomerine teeth present. The relationships of the two new genera are discussed.  相似文献   

17.
Examination of the vertebral columns of representatives of all families of salamanders revealed that, in contrast to the condition found in most other vertebrates, salamander spinal nerves often pass through foramina in the vertebrae. Two kinds of spinal nerve foramina were found: those in the anterior halves of vertebrae, and those in the posterior halves. In addition, many salamanders retain intervertebral nerves. However, within each family or, in a few cases, subfamily there is a characteristic pattern of spinal nerve-vertebral relationships. The first spinal nerve of all salamanders exits through a foramen in the anterior half of the atlas. All more posterior nerves are intervertebral in the families Cryptobranchidae, Hynobiidae and Proteidae. The posterior caudal nerves exit through the posterior halves of the caudal vertebrae in the family Amphiumidae, while in the subfamilies Dicamptodontinae and Rhyacotritoninae all post-sacral nerves exit through the posterior halves of the vertebrae. All but the first three nerves exit through posterior foramina in the family Plethodontidae and the subfamily Ambystomatinae, while all but the first two nerves pass through posterior foramina in the families Salamandridae and Sirenidae. Several fossil salamanders were also examined. These showed that the amphiumid and dicamptodontine-rhyacotritonine nerve patterns had evolved by the Late Cretaceous, and the sirenid pattern had probably evolved by that time. Other Cretaceous genera associated with the Ambystomatoidea still possessed the primitive intervertebral pattern. Using spinal nerve patterns and several other previously described morphological characters, a new hypothesis of the phylogeny of recent and fossil salamanders is presented and compared to earlier proposed phylogenies of the group. A new classification of salamander families is presented.  相似文献   

18.
Light and electron microscopy were used to investigate the morphology of reproductive characters in a characid fish, Brittanichthys axelrodi. Spermatozoa were found in ovaries of females, thereby confirming insemination in this species. Bony hooks can be found on the fourth unbranched ray and branched rays 1-4 of the anal fin and the unique sigmoidally-curved ray of the caudal fin in mature males. Testes have three distinct regions: an anterior spermatogenic region, an aspermatogenic middle region lined with a simple squamous epithelium and used for storage of mature spermatozoa, and a posterior region of coiled chambers lined with a high simple cuboidal epithelium. The most posterior region appears to be instrumental in the formation and storage of spermatozeugmata, unencapsulated sperm packets. Thus far, this tripartite testis morphology is unique among characids. The mature spermatozoon has an elongate nucleus ( approximately 5 microm in length). A striated rootlet originates at the anterior end of the distal centriole and continues to the anterior tip of the cell. The striated rootlet wraps around the entire ventral area of the anterior part of the nucleus and appears to continue around the anterior tip of the nucleus and down the dorsal side as electron-dense material. Several large, spherical mitochondria ( approximately 0.6 microm in diameter) with lamellar cristae overlap the posterior end of the nucleus and continue beyond together with the cytoplasmic collar that contains the flagellum which lacks axonemal fins. Each spermatozeugma is lanceolate in shape when sectioned mid-sagitally, with the core staining positively for mucopolysaccharides. In both sexes, the gonopore opens posterior to the anus, with the urinary pore having a separate opening posterior to the gonopore. Bands of skeletal muscle were found in the area of the male gonopore. These morphological features are likely linked to the reproductive mode of insemination, a trait that is so far as known, relatively rare among teleost fishes, but is proving increasingly frequent among certain groups of characid fishes.  相似文献   

19.

Background

In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software.

Results

At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall. New circular muscles either branch off from present fibres or form adjacent to existing ones. The number of circular muscles is higher than that of the longitudinal muscles throughout all life cycle stages. Diagonal, circular and longitudinal muscles are initially rare but their number increases with time. The ventral side bears U-shaped muscles around the mouth, which in addition is surrounded by a sphincter muscle. With the exception of the region of the statocyst, dorsoventral muscles are present along the entire body of juveniles and adults, while adults additionally exhibit radially oriented internal muscles in the anterior tip. Outer diagonal muscles are present at the dorsal anterior tip of the adult. In adult animals, the male gonopore with its associated sexual organs expresses distinct muscles. No specific statocyst muscles were found. The muscle mantles of the needle-shaped sagittocysts are situated along the lateral edges of the animal and in the posterior end close to the male gonopore. In both juveniles and adults, non-muscular filaments, which stain positively for F-actin, are associated with certain sensory cells outside the bodywall musculature.

Conclusion

Compared to the myoanatomy of other acoel taxa, Symsagittifera roscoffensis shows a very complex musculature. Although data on presumably basal acoel clades are still scarce, the information currently available suggests an elaborated musculature with longitudinal, circular and U-shaped muscles as being part of the ancestral acoel bodyplan, thus increasing the possibility that Urbilateria likewise had a relatively complicated muscular ground pattern.  相似文献   

20.
Ovarian angioarchitecture was studied by scanning electron microscopy of vascular corrosion casts in estrous, pseudopregnant (stimulated with human chorionic gonadotropin) and pregnant rabbits. In all samples, the proper ovarian branch of the ovarian artery (ramus ovaricus) entered the ovarian hilus near the caudal pole of the organ and ran parallel to the major axis of the hilus. The extraovarian venous drainage was formed by several vessels emptying into a distal large vein. The ramus ovaricus exhibited various degrees of coiling and branched in the medulla. The coiling of the ramus ovaricus and its ramifications were maintained in all samples. A venous meshwork and/or flat vein branches closely enveloped the arterial coils found in the hilus and outer medulla. At this level numerous arteriovenous contacts were demonstrated in all samples. The coiled arteries, prior to entering the ovarian cortex, supplied several small peripheral follicles which were drained by the hilar veins. In the cortex the coiled arteries branched in numerous thin, straight or slightly undulated arterioles which supplied developing estrous follicles and pseudopregnant corpora lutea. The arterioles supplying the pregnant corpora lutea were long, large and tightly spiraled. The venous drainage followed the modifications of the arterial supply. These data demonstrate that ovarian cycle and pregnancy induced significant changes in the cortical vessels, which adapted their structure to the temporary functional needs of the recruited follicles or corpora lutea. Hilar and medullary vessels have permanent structures that may represent morphological devices for (a) a continuous control of the blood flow (spiral arteries) and (b) a local recirculation of endocrine products (arteriovenous contacts) comparable to the ”countercurrent mechanism” previously shown to operate in ovaries of other species, but not yet found in rabbits. Received: 19 June 1996 / Accepted: 7 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号