首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

2.
3.
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase‐9 (MMP‐9) activity in the ischemic brain, which exacerbates blood‐brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP‐9 activity is not well understood. Here we report an important role of caveolin‐1 in mediating tPA‐induced MMP‐9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP‐9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP‐9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3‐fold increase of caveolin‐1 protein levels in endothelial cells. Interestingly, knockdown of Cav‐1 with siRNA inhibited tPA‐induced MMP‐9 mRNA up‐regulation and MMP‐9 increase in the conditioned media, but did not affect MMP‐9 decrease in cellular extracts. These results suggest that caveolin‐1 critically contributes to tPA‐mediated MMP‐9 up‐regulation, but may not facilitate MMP‐9 secretion in endothelial cells.

  相似文献   


4.
Recent evidence suggests that breast cancer is one of the most common forms of malignancy in females, and metastasis from the primary cancer site is the main cause of death. Aromatic (ar)‐turmerone is present in Curcuma longa and is a common remedy and food. In the present study, we investigated the inhibitory effects of ar‐turmerone on expression and enzymatic activity levels of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced matrix metalloproteinase (MMP)‐9 and cyclooxygenaase‐2 (COX‐2) in breast cancer cells. Our data indicated that ar‐turmerone treatment significantly inhibited enzymatic activity and expression of MMP‐9 and COX‐2 at non‐cytotoxic concentrations. However, the expression of tissue inhibitor of metalloproteinase (TIMP)‐1, TIMP‐2, MMP‐2, and COX‐1 did not change upon ar‐turmerone treatment. We found that ar‐turmerone inhibited the activation of NF‐κB, whereas it did not affect AP‐1 activation. Moreover, The ChIP assay revealed that in vivo binding activities of NF‐κB to the MMP‐9 and COX‐2 promoter were significantly inhibited by ar‐turmerone. Our data showed that ar‐turmerone reduced the phosphorylation of PI3K/Akt and ERK1/2 signaling, whereas it did not affect phosphorylation of JNK or p38 MAPK. Thus, transfection of breast cancer cells with PI3K/Akt and ERK1/2 siRNAs significantly decreased TPA‐induced MMP‐9 and COX‐2 expression. These results suggest that ar‐turmerone suppressed the TPA‐induced up‐regulation of MMP‐9 and COX‐2 expression by blocking NF‐κB, PI3K/Akt, and ERK1/2 signaling in human breast cancer cells. Furthermore, ar‐turmerone significantly inhibited TPA‐induced invasion, migration, and colony formation in human breast cancer cells. J. Cell. Biochem. 113: 3653–3662, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Increases of cytokine in the blood play important roles in the pathogenesis of influenza‐associated encephalopathy. TNF‐α was administered intravenously to wild‐type mice, after which blood, CSF and brain tissue were obtained, and changes in BBB permeability, the amounts of MMP‐9 and TIMP‐1, and the localization of activated MMP were assessed. There was a significant increase in BBB permeability after 6 and 12 hr. MMP‐9 was increased after 3 hr in the brain and cerebrospinal fluid, which was earlier than in the serum. TIMP‐1 protein in the brain increased significantly after MMP‐9 had increased. Activation of MMP‐9 was observed in neurons in the cerebral cortex and hippocampus, and in vascular endothelial cells. These findings suggest that an increase in blood TNF‐α promotes activation of MMP‐9 in the brain, and may also induce an increase in permeability of the BBB. Early activation of MMP‐9 in the brain may contribute to an early onset of neurological disorders and brain edema prior to multiple organ failure in those inflammatory diseases associated with highly increased concentrations of TNF‐α in the blood, such as sepsis, burns, trauma and influenza‐associated encephalopathy.  相似文献   

6.
Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase‐9 (MMP‐9), which degrades the matrix and leads to blood–brain barrier dysfunction. Hcy competitively binds to γ‐aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA‐A receptor in Hcy‐induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP‐9 activity via the extracellular signal‐regulated kinase (ERK) signaling pathway and by inhibition of GABA‐A receptors, thus behaving as an inhibitory neurotransmitter. Hcy‐induced reactive oxygen species production was detected using the fluorescent probe, 2′–7′‐dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate‐oxidase‐4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP‐9, measured by gelatin zymography. The GABA‐A receptor agonist, muscimol ameliorated the Hcy‐mediated MMP‐9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase‐4 (TIMP‐4). Treatment of the endothelial cell with muscimol restored the levels of TIMP‐4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy‐induced MMP‐9 via ERK signaling pathway. These results suggest that Hcy competes with GABA‐A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation. J. Cell. Physiol. 220: 257–266, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP‐9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4‐hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP‐9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP‐9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide‐stimulated RAW 264.7 cells with HNE increased MMP‐9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase‐1 protein levels, further decreasing MMP‐9 regulation. Phosphorylation of both p38 mitogen‐activated protein kinase (MAPK) and c‐Jun NH2‐terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP‐9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP‐9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP‐9 levels leading to tissue damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase‐9 (MMP‐9), and a major role for 15‐(S,R)‐hydroxy‐6,8,11,13‐eicosatetraenoic acid (15‐HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen‐activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal‐regulated kinase‐1/2 and c‐jun N‐terminal kinase‐1/2. 15‐HETE mimicked nHZ effects on p38 MAPK, whereas lipid‐free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15‐HETE also promoted phosphorylation of MAPK‐activated protein kinase‐2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ‐dependent and 15‐HETE‐dependent enhancement of MMP‐9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15‐HETE upregulate MMP‐9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP‐9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Staphylococcal superantigen‐like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P‐selectin glycoprotein ligand‐1 (PSGL‐1) and matrix metalloproteinase (MMP)‐9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid‐containing glycans of MMP‐9, but the roles of sialic acids in the interaction between SSL5 and MMP‐9 are still controversial. In the present study, we prepared recombinant glutathione S‐transferase‐tagged SSL5 (GST‐SSL5) and analyzed its binding capacity to MMP‐9 by pull‐down assay after various modifications of its carbohydrate moieties. We observed that GST‐SSL5 specifically bound to MMP‐9 from a human monocytic leukemia cell line (THP‐1 cells) and inhibited its enzymatic activity in a concentration‐dependent manner. After MMP‐9 was treated with neuraminidase, its binding activity towards GST‐SSL5 was markedly decreased. Furthermore, recombinant MMP‐9 produced by sialic acid‐deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild‐type CHO‐K1 cells. Treatment of MMP‐9 with PNGase F to remove N‐glycan resulted in no significant change in the GST‐SSL5/MMP‐9 interaction. In contrast, the binding of GST‐SSL5 to MMP‐9 secreted from THP‐1 cells cultured in the presence of an inhibitor for the biosynthesis of O‐glycan (benzyl‐GalNAc) was weaker than the binding of GST‐SSL5 to MMP‐9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid‐containing O‐glycans of MMP‐9 for the interaction of MMP‐9 with GST‐SSL5.
  相似文献   

10.
以LeY 寡糖特异性单克隆抗体AH6为工具中和胚泡表面LeY 寡糖后 ,通过RT PCR、明胶酶谱法、免疫印迹法等方法 ,在体外研究了着床前小鼠胚泡表面LeY 寡糖抗原与其基质金属蛋白酶 (MMP)、金属蛋白酶组织抑制因子 (TIMP1)的表达和分泌之间的关系。结果显示 :胚泡表面LeY 寡糖抗原被中和后仅 1.5h ,胚泡MMP2和MMP9基因转录表达明显下降、而TIMP1基因转录表达则略有升高 ;随后抗体中和引起胚泡MMP2、MMP9的分泌减少 ,而TIMP1的分泌则未见明显变化。结果表明胚泡表面的LeY 寡糖抗原对着床前胚泡的MMP的合成和分泌具有调节作用 ,而且这种作用可能主要是通过调节相应的MMP2和MMP9基因的表达而引起的  相似文献   

11.
Matrix metalloproteinases (MMPs) are a family of zinc‐dependent endopeptidases that degrade extracellular matrix components and play important roles in a variety of biological and pathological processes such as malignant tumor metastasis and invasion. In this study, we constructed carnosine–gallic acid peptide (CGP) to identify a better MMP inhibitor than carnosine. The inhibitory effects of CGP on MMP‐2 and MMP‐9 were investigated in the human fibrosarcoma (HT1080) cell line. As a result, CGP significantly decreased MMP‐2 and MMP‐9 expression levels without a cytotoxic effect. Moreover, CGP may inhibit migration and invasion in HT1080 cells through the urokinase plasminogen activator (uPA)–uPA receptor signaling pathways to inhibit MMP‐2 and MMP‐9. Based on these results, it appears that CGP may play an important role in preventing and treating several MMP‐2 and MMP‐9‐mediated health problems such as metastasis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Colon carcinoma invasiveness is a process involving cell–cell and cell–matrix alterations, local proteolysis of the ECM (extracellular matrix) or changes in cytokine and growth factor levels. In order to evaluate the role of TGF‐β1 (transforming growth factor‐β1) and small G protein RhoA in tumour progression, the influence of TGF‐β1 treatment or RhoA‐associated kinase inhibitor on the production of NO (nitric oxide) and MMP‐2 and MMP‐9 (metalloproteinases‐2 and ‐9) was analysed in three human colon adenocarcinoma cell lines (HT29, LS180, SW948) representing different stages of tumour development. All the tested cell lines produced low amounts of MMP‐2 and MMP‐9. rhTGF‐β1 and the synthetic Rho kinase inhibitor (Y‐27632) decreased MMP‐2 secretion by colon cancer cells, especially in the most advanced stage of colon cancer. rhTGF‐β1 decreased NO secretion by cells, while Y‐27632 had no effect on it. Immunoblotting with anti‐RhoA antibodies followed by densitometry revealed that RhoA levels were slightly increased after incubation of colon carcinoma cells (SW948) with rhTGF‐β1. rhTGF‐β1 induced α‐smooth muscle actin (α‐SMA) expression, especially in high Duke's grade of colon cancer, while Y‐27632 blocked it. Summing up, in colon carcinoma cells, TGF‐β1 and RhoA protein may regulate tumour invasiveness measured as MMP, NO and α‐SMA expression or assayed using motility data and may be a good target for cancer therapy.  相似文献   

13.
14.
The levels of metalloproteinases (MMP-2,-9), their tissue inhibitors (TIMP-1,-2) and extracellular matrix metalloproteinase inducer (EMMPRIN) were studied in tumor tissue and blood serum from patients with head and neck squamous cell carcinoma. Immunohistochemical investigation showed much higher expression of MMP-9 and TIMP-1 in tumor tissue compared with MMP-2 and TIMP-2. There was different distribution of the investigated parameters (except TIMP-1) in cancer cells and stroma. Accumulation of MMP-2, MMP-9, and TIMP-2 was found mainly in cell elements (fibrocytes, leukocytes, etc.) and in stromal extracellular space. Expression of EMMPRIN was significantly higher in tumor cells than in stromal cells. It is possible that carcinoma cells express EMMPRIN, which may increase MMP production by surrounding cells. There was significant decrease of TIMP-1 expression in carcinoma cells with N1 grade of metastasis than in tumors without metastasis. The level of TIMP-1 in blood serum from patients with tumor metastases to regional lymph nodes was lower than in serum from patients without metastases. Thus, MMP-9 and TIMP-1 play an important role in the development of head and neck squamous cell carcinoma and the TIMP-1 level in blood serum and cancer tissues is linked to the first grade of regional lymph node metastasis.  相似文献   

15.
Proteolytic degradation of extracellular matrix is one of the principal features of cutaneous wound healing but little is known about the activities of gelatinases; matrix metalloproteinase‐2 (MMP‐2) and matrix metalloproteinase‐9 (MMP‐9) on abnormal scar formation. The aim of this study is to determine collagen levels and the gelatinase activities in tissue from hypertrophic scars, atrophic scars, keloids and donor skin in 36 patients and 14 donors. Gelatinase levels (proenzyme + active enzyme) were determined by ELISA and their activities by gelatin zymography. MMP‐9 activity was undetectable in gelatin zymography analysis. Pro‐MMP‐2 levels (median) were highest in normal skin group 53.58 (36.40–75.11) OD µg?1 protein, while active MMP‐2 levels were highest in keloid group 52.53 (42.47–61.51) OD µg?1 protein. The active/pro ratio was the highest in keloid group 0.97 followed by hypertrophic scar, normal skin and atrophic scar groups 0.69 > 0.54 > 0.48, respectively. According to results of our study, the two‐phase theory of the duration of hypertrophic scar and keloid formation can be supported by the data of tissue collagen and gelatinase analysis. This study is the first to relate scar formation relationship in regard to gelatinase activation ratio in a keloid, hypertrophic and atrophic scar patient group which is chosen appropriate in age and sex. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Hypoxic injury of cardiovascular system is one of the most frequent complications following ischaemia. Heart injury arises from increased degradation of contractile proteins, such as myosin light chains (MLCs) and troponin I by matrix metalloproteinase 2 (MMP‐2). The aim of the current research was to study the effects of 5‐phenyloxyphenyl‐5‐aminoalkyl nitrate barbiturate (MMP‐2‐inhibitor‐NO‐donor hybrid) on hearts subjected to ischaemia/reperfusion (I/R) injury. Primary human cardiac myocytes and Wistar rat hearts perfused using Langendorff method have been used. Human cardiomyocytes or rat hearts were subjected to I/R in the presence or absence of tested hybrid. Haemodynamic parameters of heart function, markers of I/R injury, gene and protein expression of MMP‐2, MMP‐9, inducible form of NOS (iNOS), asymmetric dimethylarginine (ADMA), as well as MMP‐2 activity were measured. Mechanical heart function, coronary flow (CF) and heart rate (HR) were decreased in hearts subjected to I/R Treatment of hearts with the hybrid (1‐10 µmol/L) resulted in a concentration‐dependent recovery of mechanical function, improved CF and HR. This improvement was associated with decreased tissue injury and reduction of synthesis and activity of MMP‐2. Decreased activity of intracellular MMP‐2 led to reduced degradation of MLC and improved myocyte contractility in a concentration‐dependent manner. An infusion of a MMP‐2‐inhibitor‐NO‐donor hybrid into I/R hearts decreased the expression of iNOS and reduced the levels of ADMA. Thus, 5‐phenyloxyphenyl‐5‐aminoalkyl nitrate barbiturate protects heart from I/R injury.  相似文献   

17.
A growing body of evidence points towards smoking‐related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase‐9 (pro‐ and active MMP‐9), neutrophil gelatinase‐associated lipocalin (NGAL) and the proMMP‐9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable‐phase COPD patients (82 smokers, 18 never‐smokers) and 28 healthy adults (21 smokers, 7 never‐smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP‐9, NGAL and proMMP‐9/NGAL in COPD smokers. While the triad discriminated between smokers and non‐smokers in the COPD group, MMP‐9 and proMMP‐9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack‐years did not alter the findings. Serum MMP‐9, NGAL and proMMP‐9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP‐3 (but not of IL‐6 and MMP‐12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack‐years. Among COPD smokers, levels of MMP‐9, NGAL and proMMP‐9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP‐9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP‐9, NGAL, proMMP‐9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking.  相似文献   

18.
It is well known that rheumatoid arthritis (RA) is an autoimmune joint disease in which fibroblast‐like synoviocytes (FLSs) play a pivotal role. In this study, we investigated the anti‐arthritic properties of acacetin in FLSs. The expression of matrix metalloproteinase (MMP)‐1, MMP‐3 and MMP‐13 were investigated by quantitative RT‐PCR and western blot at gene and protein levels. At the same time, the phosphorylation of mitogen‐activated protein kinases (MAPK) was investigated. The DNA‐binding activity of NF‐κB was investigated by electrophoretic mobility shift assay. We found that acacetin inhibits p38 and JNK phosphorylation and reduces MMP‐1, MMP‐3 and MMP‐13 expression in interleukin‐1β‐induced FLSs. Our results suggest that acacetin has antiarthritic effects in FLSs. Thus, acacetin should be further studied for the treatment of arthritis.  相似文献   

19.
Left ventricular (LV) remodelling after myocardial infarction (MI) is a crucial determinant of the clinical course of heart failure. Matrix metalloproteinase (MMP) activation is strongly associated with LV remodelling after MI. Elucidation of plasma membrane receptors related to the activation of specific MMPs is fundamental for treating adverse cardiac remodelling after MI. The aim of current investigation was to explore the potential association between the low‐density lipoprotein receptor‐related protein 1 (LRP1) and MMP‐9 and MMP‐2 spatiotemporal expression after MI. Real‐time PCR and Western blot analyses showed that LRP1 mRNA and protein expression levels, respectively, were significantly increased in peri‐infarct and infarct zones at 10 and 21 days after MI. Confocal microscopy demonstrated high colocalization between LRP1 and the fibroblast marker vimentin, indicating that LRP1 is mostly expressed by cardiac fibroblasts in peri‐infarct and infarct areas. LRP1 also colocalized with proline‐rich tyrosine kinase 2 (pPyk2) and MMP‐9 in cardiac fibroblasts in ischaemic areas at 10 and 21 days after MI. Cell culture experiments revealed that hypoxia increases LRP1, pPyk2 protein levels and MMP‐9 activity in fibroblasts, without significant changes in MMP‐2 activity. MMP‐9 activation by hypoxia requires LRP1 and Pyk2 phosphorylation in fibroblasts. Collectively, our in vivo and in vitro data support a major role of cardiac fibroblast LRP1 levels on MMP‐9 up‐regulation associated with ventricular remodelling after MI.  相似文献   

20.
Although accumulating evidence had revealed that NFAT1 has oncogenic characteristics, the role of this molecule in melanoma cells remains unclear. Previous studies proved that CD147 plays a crucial function in melanoma cell metastasis and invasion through matrix metalloproteinase 9 (MMP‐9) expression; however, the details of how CD147 regulates MMP‐9 expression remain elusive. In this study, we demonstrated that CD147 and NFAT1 are overexpressed in the tissues of patients with primary and metastatic melanoma, which has shown a positive correlation. Further, we observed that CD147 regulates NFAT1 activation through the [Ca2+]i‐calcineurin pathway. Knockdown of NFAT1 significantly suppresses melanoma metastasis, and we demonstrated that CD147 affects melanoma metastasis in an NFAT1‐dependent manner. Moreover, we verified that NFAT1 directly binds to MMP‐9 promoter. Inhibition of CD147 expression significantly abrogates MMP‐9 promoter luciferase gene reporter activity as well as NFAT1 association with MMP‐9 promoter. Taken together, this study demonstrated that CD147 affects MMP‐9 expression through regulating NFAT1 activity and provided a novel mechanism by which NFAT1 contributes to melanoma metastasis through the regulation of MMP‐9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号