首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
目的:探讨Sestrin2蛋白对热暴露肺上皮细胞凋亡的干预作用及其作用机制。方法:体外培养的Beas-2B细胞分为对照组(37℃)和热暴露组(39℃、40℃和41℃),在上述温度中暴露不同时间(0、3、6和12 h),胰酶消化后收集细胞,分别通过Western blot、荧光分光光度计、流式细胞仪等方法检测细胞中的Sestrin2、超氧化物歧化酶(SOD)、活性氧自由基(ROS)表达水平,细胞线粒体膜电位及细胞凋亡率。基因序列克隆入高表达质粒pcDNA 3.1+中,采用Lipfectamine 2000方法转染Beas-2B细胞,构建Sestrin2和SOD高表达细胞,观察细胞线粒体膜电位及细胞凋亡等指标的变化。结果:随着暴露温度的升高,与对照组相比,热暴露组细胞Sestrin2蛋白表达水平下降。在41℃热暴露Beas-2B细胞,不同时间点ROS水平显著上升,线粒体膜电位显著下降,细胞凋亡率增加。Sestrin2和SOD高表达细胞,在41℃暴露条件下,与对照组比较,ROS表达水平显著降低,线粒体膜电位下降幅度减小,热暴露导致细胞凋亡率降低。结论: Sestrin2能够通过线粒体膜电位和SOD缓解热暴露引起肺上皮细胞的凋亡,对Beas-2B细胞具有保护作用。  相似文献   

2.
Nitric oxide (NO) can regulate osteoblast activities. This study was aimed to evaluate the protective effects of pretreatment with sodium nitroprusside (SNP) as a source of NO on hydrogen peroxide‐induced osteoblast insults and its possible mechanisms. Exposure of human osteosarcoma MG63 cells to hydrogen peroxide significantly increased cellular oxidative stress, but decreased ALP activity and cell viability, inducing cell apoptosis. Pretreatment with 0.3 mM SNP significantly lowered hydrogen peroxide‐induced cell insults. Treatment of human MG63 cells with hydrogen peroxide inhibited Bcl‐2 mRNA and protein production, but pretreatment with 0.3 mM SNP significantly ameliorated such inhibition. Sequentially, hydrogen peroxide decreased the mitochondrial membrane potential, but increased the levels of cytochrome c and caspase‐3 activity. Pretreatment with 0.3 mM SNP significantly lowered such alterations. Exposure to hydrogen peroxide decreased Runx2 mRNA and protein syntheses. However, pretreatment with 0.3 mM SNP significantly lowered the suppressive effects. Runx2 knockdown using RNA interference inhibited Bcl‐2 mRNA production in human MG63 cells. Protection of pretreatment with 0.3 mM SNP against hydrogen peroxide‐induced alterations in ALP activity, caspase‐3 activity, apoptotic cells, and cell viability were also alleviated after administration of Runx2 small interference RNA. Thus, this study shows that pretreatment with 0.3 mM SNP can protect human MG63 cells from hydrogen peroxide‐induced apoptotic insults possibly via Runx2‐involved regulation of bcl‐2 gene expression. J. Cell. Biochem. 108: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Plasma is generated by ionizing gas molecules. Helium (He)‐based cold atmospheric plasma (CAP) was generated using a high‐voltage power supply with low‐frequency excitation (60 Hz at 7 kV) and He flow at 2 l/min. Platinum nanoparticles (Pt‐NPs) are potent antioxidants due to their unique ability to scavenge superoxides and peroxides. These features make them useful for the protection against oxidative stress‐associated pathologies. Here, the effects of Pt‐NPs on He‐CAP‐induced apoptosis and the underlying mechanism were examined in human lymphoma U937 cells. Apoptosis was measured after cells were exposed to He‐CAP in the presence or absence of Pt‐NPs. The effects of combined treatment were determined by observing the changes in intracellular reactive oxygen species (ROS) and both mitochondrial and Fas dependent pathway. The results indicate that Pt‐NPs substantially scavenge He‐CAP‐induced superoxides and peroxides and inhibit all the pathways involved in apoptosis execution. This might be because of the SOD/catalase mimetic effects of Pt‐NPs. These results showed that the Pt‐NPs can induce He‐CAP desensitization in human lymphoma U937 cells.  相似文献   

4.
5.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   

6.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

7.
8.
Resveratrol, a naturally occurring polyphenol, has been shown to possess chemopreventive activities. In this study, we show that resveratrol (0–500 µM) inhibits the growth of a doxorubicin‐resistant B16 melanoma cell subline (B16/DOX) (IC50 = 25 µM after 72 h, P < 0.05). This was accomplished by imposing an artificial checkpoint at the G1–S phase transition, as demonstrated by cell‐cycle analysis and down‐regulation of cyclin D1/cdk4 and increased of p53 expression level. The G1‐phase arrest of cell cycle in resveratrol‐treated (10–100 µM) B16/DOX cells was followed by the induction of apoptosis, which was revealed by pyknotic nuclei and fragmented DNA. Resveratrol also potentiated at subtoxic dose (25 µM for 24 h) doxorubicin cytotoxicity in the chemoresistant B16 melanoma (P < 0.01). When administered to mice, resveratrol (12.5 mg/kg) reduced the growth of an established B16/DOX melanoma and prolonged survival (32% compared to untreated mice). All these data support a potential use of resveratrol alone or in combination with other chemotherapeutic agents in the management of chemoresistant tumors. J. Cell. Biochem. 110: 893–902, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP‐activated Cl channel, is extensively expressed in the epithelial cells of various tissues and organs. Accumulating evidence indicates that aberrant expression or mutation of CFTR is related to carcinoma development. Malignant gliomas are the most common and aggressive intracranial tumours; however, the role of CFTR in the development of malignant gliomas is unclear. Here, we report that CFTR is expressed in malignant glioma cell lines. Suppression of CFTR channel function or knockdown of CFTR suppresses glioma cell viability whereas overexpression of CFTR promotes it. Additionally, overexpression of CFTR suppresses apoptosis and promotes glioma progression in both subcutaneous and orthotopic xenograft models. Cystic fibrosis transmembrane conductance regulator activates Akt/Bcl2 pathway, and suppression of PI3K/Akt pathway abolishes CFTR overexpression–induced up‐regulation of Bcl2 (MK‐2206 and LY294002) and cell viability (MK‐2206). More importantly, the protein expression level of CFTR is significantly increased in glioblastoma patient samples. Altogether, our study has revealed a mechanism by which CFTR promotes glioma progression via up‐regulation of Akt/Bcl2‐mediated anti‐apoptotic pathway, which warrants future studies into the potential of using CFTR as a therapeutic target for glioma treatment.  相似文献   

11.
Melanoma is characterized by dysregulated intracellular signalling pathways including an impairment of the cell death machinery, ultimately resulting in melanoma resistance, survival and progression. This explains the tumour's extraordinary resistance to the standard treatment. Imiquimod is a topical immune response modifier (imidazoquinoline) with both antiviral and antitumour activities. The mechanism by which imiquimod triggers the apoptosis of melanoma cells has now been carefully elucidated. Imiquimod‐induced apoptosis is associated with the activation of apoptosis signalling regulating kinase1/c‐Jun‐N‐terminal kinase/p38 pathways and the induction of endoplasmic stress characterized by the activation of the protein kinase RNA‐like endoplasmic reticulum kinase signalling pathway, increase in intracellular Ca2+ release, degradation of calpain and subsequent cleavage of caspase‐4. Moreover, imiquimod triggers the activation of NF‐κB and the expression of the inhibitor of apoptosis proteins (IAPs) such as, X‐linked IAP (XIAP) together with the accumulation of reactive oxygen species (ROS). Also, imiquimod triggers mitochondrial dysregulation characterized by the loss of mitochondrial membrane potential (Δψm), the increase in cytochrome c release, and cleavage of caspase‐9, caspase‐3 and poly(ADP‐ribose) polymerase (PARP). Inhibitors of specific pathways, permit the elucidation of possible mechanisms of imiquimod‐induced apoptosis. They demonstrate that inhibition of NF‐kB by the inhibitor of nuclear factor kappa‐B kinase (IKK) inhibitor Bay 11‐782 or knockdown of XIAP induces melanoma apoptosis in cells exposed to imiquimod. These findings support the use of either IKK inhibitors or IAP antagonists as adjuvant therapies to improve the effectiveness topical imiquimod in the treatment of melanoma.  相似文献   

12.
13.
Osteoclasts are bone‐resorbing cells formed by fusion of mononuclear precursors. The matrix proteins, fibronectin (FN), vitronectin (VN), and osteopontin (OPN) are implicated in joint destruction and interact with osteoclasts mainly through integrins. To assess the effects of these matrix proteins on osteoclast formation and activity, we used RAW 264.7 (RAW) cells and mouse splenocytes differentiated into osteoclasts on tissue culture polystyrene (TCP) or osteologic? slides pre‐coated with 0.01–20 µg/ml FN, VN, and OPN. At 96 h, osteoclast number and multinucleation were decreased on VN and FN compared to OPN and TCP in both RAW and splenocytes cell cultures. When early differentiation was assessed, VN but not FN decreased cytoplasmic tartrate‐resistant acid phosphatase activity and pre‐osteoclast number at 48 h. OPN had the opposite effect to FN on osteoclast formation. When RAW cells were differentiated on OPN and treated by FN and OPN, osteoclast number only in the FN treated group was 40–60% lower than the control, while the total number of nuclei was unchanged, suggesting that FN delays osteoclast fusion. In contrast to its inhibitory effect on osteoclastogenesis, FN increased resorption by increasing both osteoclast activity and the percentage of resorbing osteoclasts. This was accompanied by an increase in nitric oxide (NO) levels and interleukin‐1β (IL‐1β). IL‐1β production was inhibited using the NO‐synthase inhibitor only on FN indicating a FN‐specific cross‐talk between NO and IL‐1β signaling pathways. We conclude that FN upregulates osteoclast activity despite inhibiting osteoclast formation and that these effects involve NO and IL‐1β signaling. J. Cell. Biochem. 111: 1020–1034, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Although methane sulfonate compounds are widely used for the protein modification for their selectivity of thiol groups in proteins, their intracellular signaling events have not yet been clearly documented. This study demonstrated the methane sulfonate chemical 1,4‐butanediyl‐bismethanethiosulfonate (BMTS)‐induced cascades of signals that ultimately led to apoptosis of Jurkat cells. BMTS induced apoptosis through fragmentation of DNA, activation of caspase‐9 and caspase‐3, and downregulation of Bcl‐2 protein with reduction of mitochondrial membrane potential. Moreover, BMTS intensely and transiently induced intracellular reactive oxygen species (ROS) production and ROS produced by BMTS was mediated through mitochondria. We also found that a reducing agent dithiothreitol (DTT) and an anti‐oxidant N‐acetyl cysteine (NAC) inhibited BMTS‐mediated caspase‐9 and ‐3 activation, ROS production and induction of Annexin V/propidium iodide double positive cells, suggesting the involvement of ROS in the apoptosis process. Therefore, this study further extends our understanding on the basic mechanism of redox‐linked apoptosis induced by sulfhydryl‐reactive chemicals. J. Cell. Biochem. 108: 1059–1065, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   

17.
18.
Skeletal muscle cells are exposed to mechanical stretch during embryogenesis. Increased stretch may contribute to cell death, and the molecular regulation by stretch remains incompletely understood. The aim of this study was to investigate the effects of cyclic stretch on cell death and apoptosis in myoblast using a Flexercell Strain Unit. Apoptosis was studied by annexin V binding and PI staining, DNA size analysis, electron microphotograph, and caspase assays. Fas/FasL expression was determined by Western blot. When myoblasts were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time‐dependent manner. We also determined that stretch induced cleavage of caspase‐3 and increased caspase‐3 activity. Caspase‐3 inhibition reduced stretch‐induced apoptosis. Protein levels of Fas and FasL remained unchanged. Our findings implicated that stretch‐induced cell death is an apoptotic event, and that the activation of caspase cascades is required in stretch‐induced cell apoptosis. Furthermore, we had provided evidence that caspase‐3 mediated cyclic stretch‐induced myoblast apoptosis. Mechanical forces induced activation of caspase‐3 via signaling pathways independent of Fas/FasL system. J. Cell. Biochem. 107: 834–844, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号