We demonstrate an accurate quantitative characterization of absolute two‐ and three‐photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high‐brightness, cell‐specific two‐ and three‐photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two‐photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep‐tissue experiments. 相似文献
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses. 相似文献
Noninvasive near‐infrared (NIR) light ranging from 650 to 1000 nm (NIR‐I) is widely employed in fundamental research and clinical applications; however, a recently discovered second NIR (NIR‐II) window from 1000 to 1700 nm exhibits even better deep‐tissue imaging capability due to reduced photon scattering, minimized tissue autofluorescence, and increased applicable power at longer wavelengths. This review focuses on recent advances of organic contrast agents developed for in vivo fluorescence and photoacoustic imaging in the NIR‐II optical window. The superiority of the NIR‐II over the NIR‐I window for molecular imaging is first discussed in detail, followed by discussion of fluorescence and photoacoustic imaging of cancer, vasculature, and the brain using organic contrast agents in the NIR‐II window. At last, challenges and perspectives of organic contrast agents for NIR‐II in vivo imaging are suggested. 相似文献
This study aims to develop a novel cross‐sectional imaging of fluorescence in over‐1000 nm near‐infrared (OTN‐NIR), which allows in vivo deep imaging, using computed tomography (CT) system. Cylindrical specimens of composite of OTN‐NIR fluorophore, NaGdF4 co‐doped with Yb3+ and Ho3+ (ex: 980 nm, em: 1150 nm), were embedded in cubic agar (10.5–12 mm) or in the peritoneal cavity of mice and placed on a rotatable stage. When the fluorescence from inside of the samples was serially captured from multiple angles, the images were disrupted by the reflection and refraction of emitted light on the sample‐air interface. Immersing the sample into water filled in a rectangular bath suppressed the disruption at the interface and successfully reconstructed the position and concentration of OTN‐NIR fluorophores on the cross‐sectional images using a CT technique. This is promising as a novel three‐dimensional imaging technique for OTN‐NIR fluorescent image projections of small animals captured from multiple angles. 相似文献
Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain. 相似文献
We present a first in vivo application of phase dual‐slopes (DS?), measured with frequency‐domain near‐infrared spectroscopy on four healthy human subjects, to demonstrate their enhanced sensitivity to cerebral hemodynamics. During arterial blood pressure oscillations elicited at a frequency of 0.1 Hz, we compare three different ways to analyze either intensity (I) or phase (?) data collected on the subject's forehead at multiple source‐detector distances: Single‐distance, single‐slope and DS. Theoretical calculations based on diffusion theory show that the method with the deepest maximal sensitivity (at about 11 mm) is DS?. The in vivo results indicate a qualitative difference of phase data (especially DS?) and intensity data (especially single‐distance intensity [SDI]), which we assign to stronger contributions from scalp hemodynamics to SDI and from cortical hemodynamics to DS?. Our findings suggest that scalp hemodynamic oscillations may be dominated by blood volume dynamics, whereas cortical hemodynamics may be dominated by blood flow velocity dynamics. 相似文献
In this study, we used rat animal model to compare the efficiency of indocyanine green (ICG)‐assisted dental near‐infrared fluorescence imaging with X‐ray imaging, and we optimized the imaging window for both unerupted and erupted molars. The results show that the morphology of the dental structures was observed clearly from ICG‐assisted dental images (especially through the endoscope). A better image contrast was easily acquired at the short imaging windows (<10 minutes) for unerupted and erupted molars. For unerupted molars, there is another optimized imaging window (48‐96 hours) with a prominent glow‐in‐the‐dark effect: only the molars remain bright. This study also revealed that the laser ablation of dental follicles can disrupt the molar development, and our method is able to efficiently detect laser‐treated molars and acquire the precise morphology. Thus, ICG‐assisted dental imaging has the potential to be a safer and more efficient imaging modality for the real‐time diagnosis of dental diseases. 相似文献
Small animal deep‐tissue fluorescence imaging in the second Biological Window (II‐BW, 1000–1350 nm) is limited by the presence of undesirable infrared‐excited, infrared‐emitted (900–1700 nm) autofluorescence whose origin, spectral properties and dependence on strains is still unknown. In this work, the infrared autofluorescence and laser‐induced whole body heating of five different mouse strains with distinct coat colors (black, grey, agouti, white and nude) has been systematically investigated. While neither the spectral properties nor the magnitude of organ autofluorescence vary significantly between mouse strains, the coat color has been found to strongly determine both the autofluorescence intensity as well as the laser‐induced whole body heating. Results included in this work reveal mouse strain as a critical parameter that has to be seriously considered in the design and performance of small animal imaging experiments based on infrared‐emitting fluorescent markers.
Optical coupling between a single, individually addressable neuron and a properly designed optical fiber is demonstrated. Two‐photon imaging is shown to enable a quantitative in situ analysis of such fiber–single‐neuron coupling in the live brain of transgenic mice. Fiber‐optic interrogation of single pyramidal neurons in mouse brain cortex is performed with the positioning of the fiber probe relative to the neuron accurately mapped by means of two‐photon imaging. These results pave the way for fiber‐optic interfaces to single neurons for a stimulation and interrogation of individually addressable brain cells in chronic in vivo studies on freely behaving transgenic animal models, as well as the integration of fiber‐optic single‐neuron stimulation into the optical imaging framework.
Stroke is a significant cause of morbidity and long‐term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two‐photon microscopy (TPM) to label‐freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia‐reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning‐assisted TPM to evaluate the ischemic regions based on tissue edema, two‐photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri‐infarct area, and remote area. These results propose an automated and label‐free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics. 相似文献
Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue‐shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP‐labeled nucleus and tdTomato‐labeled plasma membrane, time‐lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two‐color protein labeling in living cells and in two‐color tumor labeling in mice. 相似文献
Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines. 相似文献
Engineering fluorescent proteins (FPs) to emit light at longer wavelengths is a significant focus in the development of the next generation of fluorescent biomarkers, as far‐red light penetrates tissue with minimal absorption, allowing better imaging inside of biological hosts. Structure‐guided design and directed evolution have led to the discovery of red FPs with significant bathochromic shifts to their emission. Here, we present the crystal structure of one of the most bathochromically shifted FPs reported to date, AQ143, a nine‐point mutant of aeCP597, a chromoprotein from Actinia equina. The 2.19 Å resolution structure reveals several important chromophore interactions that contribute to the protein's far‐red emission and shows dual occupancy of the green and red chromophores. 相似文献