首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the development of a depth‐sensitive Raman spectroscopy system using the configuration of cone–shell excitation and cone detection. The system uses a 785 nm diode laser and three identical axicons for Raman excitation of the target sample in the form of a hollow conic section. The Raman scattered light from the sample, passed through the same (but solid) conic section, is collected for detection. Apart from its ability of probing larger depths (? few mm), an important attraction of the system is that the probing depths can be varied by simply varying the separation between axicons in the excitation arm. Furthermore, no adjustment is required in the sample arm, which is a significant advantage for noncontact, depth‐sensitive measurement. Evaluation of the performance of the developed setup on nonbiological phantom and biological tissue sample demonstrated its ability to recover Raman spectra of layers located at depths of ?2–3 mm beneath the surface.

  相似文献   


2.
One of the main challenges for laser‐scanning microscopy of biological tissues with refractive heterogeneities is the degradation in spatial resolution that occurs as a result of beam steering and distortion. This challenge is particularly significant for dual‐axis confocal (DAC) microscopy, which achieves improved spatial‐filtering and optical‐sectioning performance over traditional confocal microscopy through off‐axis illumination and collection of light with low‐numerical aperture (NA) beams that must intersect precisely at their foci within tissues. DAC microscope image quality is sensitive to positional changes and distortions of these illumination‐ and collection‐beam foci. Previous studies have shown that Bessel beams display improved positional stability and beam quality than Gaussian beams when propagating through tissues with refractive heterogeneities, which suggests that Bessel‐beam illumination may enhance DAC microscopy of such tissues. Here, we utilize both Gaussian and Bessel illumination in a point‐scanned DAC microscope and quantify the resultant degradation in resolution when imaging within heterogeneous optical phantoms and fresh tissues. Results indicate that DAC microscopy with Bessel illumination exhibits reduced resolution degradation from microscopic tissue heterogeneities compared to DAC microscopy with conventional Gaussian illumination.

  相似文献   


3.
Measuring Raman spectra through an optical fibre is usually complicated by the high intrinsic Raman scatter of the fibre material. Common solutions such as the use of multiple fibres and distal optics are complex and bulky. We demonstrate the use of single novel hollow‐core negative‐curvature fibres (NCFs) for Raman and surface‐enhanced Raman spectroscopy (SERS) sensing using no distal optics. The background Raman emission from the silica in the NCF was at least 1000× smaller than in a conventional solid fibre, while maintaining the same collection efficiency. We transmitted pump light from a 785‐nm laser through the NCF, and we collected back the weak Raman spectra of different distal samples, demonstrating the fibre probe can be used for measurements of weak Raman and SERS signals that would otherwise overlap spectrally with the silica background. The lack of distal optics and consequent small probe diameter (<0.25 mm) enable applications that were not previously possible.   相似文献   

4.
We have developed a reflection‐mode switchable subwavelength Bessel‐beam (BB) and Gaussian‐beam (GB) photoacoustic microscopy (PAM) system. To achieve both reflection‐mode and high resolution, we tightly attached a very small ultrasound transducer to an optical objective lens with numerical aperture of 1.0 and working distance of 2.5 mm. We used axicon and an achromatic doublet in our system to obtain the extended depth of field (DOF) of the BB. To compare the DOF performance achieved with our BB‐PAM system against GB‐PAM system, we designed our system so that the GB can be easily generated by simply removing the lenses. Using a 532 nm pulse laser, we achieved the lateral resolutions of 300 and 270 nm for BB‐PAM and GB‐PAM, respectively. The measured DOF of BB‐PAM was approximately 229 μm, which was about 7× better than that of GB‐PAM. We imaged the vasculature of a mouse ear using BB‐PAM and GB‐PAM and confirmed that the DOF of BB‐PAM is much better than the DOF of GB‐PAM. Thus, we believe that the high resolution achieved at the extended DOF by our system is very practical for wide range of biomedical research including red blood cell (RBC) migration in blood vessels at various depths and observation of cell migration or cell culture.   相似文献   

5.
The broad range of applications of spatially‐offset Raman spectroscopy (SORS) were found to involve samples having only marginal differences in Raman cross‐sections between the surface and subsurface targets. We report the results of a feasibility study to evaluate the potential of the approach to identify the presence of a very low Raman‐active turbid sample placed inside a highly Raman‐active diffusely scattering matrix. Paraffin sandwiched tissue blocks prepared by embedding slices of chicken muscle tissue into solid paraffin blocks were employed as representative samples for the study. It was found that in contrast to the several millimetres of probing depth reported in the earlier applications, the Raman signatures of tissue were best recovered when it was located beneath the surface of the paraffin block at a depth of around a millimetre, beyond which the quality of recovery was increasingly poorer. However, the probing depth could be further increased by increasing the thickness of the embedded tissue sections. The results clearly suggest that though the probing depth achievable under the current condition is less than that found in previous applications, nevertheless it is sufficient for various other applications that would not require probing as deep as was required earlier.

  相似文献   


6.
Total internal reflection fluorescence excitation (TIRF) microscopy allows the selective observation of fluorescent molecules in immediate proximity to an interface between different refractive indices. Objective‐type or prism‐less TIRF excitation is typically achieved with laser light sources. We here propose a simple, yet optically advantageous light‐emitting diode (LED)‐based implementation of objective‐type TIRF (LED‐TIRF). The proposed LED‐TIRF condenser is affordable and easy to set up at any epifluorescence microscope to perform multicolor TIRF and/or combined TIRF‐epifluorescence imaging with even illumination of the entire field of view. Electrical control of LED light sources replaces mechanical shutters or optical modulators. LED‐TIRF microscopy eliminates safety burdens that are associated with laser sources, offers favorable instrument lifetime and stability without active cooling. The non‐coherent light source and the type of projection eliminate interference fringing and local scattering artifacts that are associated with conventional laser‐TIRF. Unlike azimuthal spinning laser‐TIRF, LED‐TIRF does not require synchronization between beam rotation and the camera and can be monitored with either global or rolling shutter cameras. Typical implementations, such as live cell multicolor imaging in TIRF and epifluorescence of imaging of short‐lived, localized translocation events of a Ca2+‐sensitive protein kinase C α fusion protein are demonstrated.  相似文献   

7.
A laser's high degree of coherence leads to interferences, which—in the absence of precautions—can cause severe image distortions such as fringes and speckles and which thereby strongly hamper a meaningful interpretation of hyperspectral images in laser‐based widefield microspectroscopy. While images and spectra of homogenous samples may already suffer from interferences, any structured object such as a tissue thin section will add to these distortions due to wavelength‐ and, in particular, sample‐dependent phase shifts (structure sizes, absorption coefficients, refractive indices). This effect is devastating for the universal applicability of laser‐based microspectroscopy especially in the mid‐infrared (MIR), where cell sizes are of the same dimension as the wavelength of the illumination source. Here, we show that the impact of interferences is strongly mitigated by reducing the time‐averaged spatiotemporal coherence properties of the illumination using a moving plus a stationary scatterer. In this case, the illumination path provides a pseudothermal radiation source and spatially resolved spectra can be obtained at the quality of the reference method, that is, Fourier‐transform infrared microspectroscopy, without compromising spectral or spatial resolution.   相似文献   

8.
Existing approaches for early‐stage bladder tumor diagnosis largely depend on invasive and time‐consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real‐time tumor diagnosis can enable immediate laser‐based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real‐time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe‐based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low‐ and high‐grade tumor.  相似文献   

9.
A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM‐SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2‐mm deep into strong scattering media (lard) to acquire up to a 14‐fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6‐mm thick brain tissue layer. This depth resolved label‐free multimodal approach is a powerful route to analyze complex biomedical samples.   相似文献   

10.
Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes.  相似文献   

11.
The biomolecular events resulting from the progression of hepatoblastoma remain to be elucidated. Fourier‐transform infrared (FTIR) and Raman spectroscopies are capable of noninvasively and accurately capturing the biochemical properties of biological tissue from its pathological status. Our aim was to probe critial biomolecular changes of liver accompanying the progression of pure foetal hepatoblastoma (PFH) by FTIR and Raman spectroscopies. Herein, biochemical alterations were both evident in the FTIR spectra (regions of 3100‐2800 cm?1 and 1800‐900 cm?1) and the Raman spectra (region of 1800‐400 cm?1) among normal, borderline and malignant liver tissues. Compared with normal tissues, the ratios of protein‐to‐lipid, α‐helix‐to‐β‐sheet, RNA‐to‐DNA, CH3 methyl‐to‐CH2 methylene, glucose‐to‐phospholipids, and unsaturated‐to‐saturated lipids intensities were significantly higher in malignant tissues, while the ratios of RNA‐to‐Amide II, DNA‐to‐Amide II, glycogen‐to‐cholesterol and Amide I‐to‐Amide II intensities were remarkably lower. These biochemical alterations in the transition from normal to malignant have profound implications not only for cyto‐pathological classification but also for molecular understanding of PFH progression. The successive changes of the spectral characteristics have been shown to be consistent with the development of PFH, indicating that FTIR and Raman spectroscopies are excellent tools to interrogate the biochemical features of different grades of PFH.   相似文献   

12.
The ability of noble metal‐based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface‐enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by‐products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser‐synthesized Au‐based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection. We show that these Au‐based nanomaterials can efficiently enhance Raman signals from model R6G molecules, while the enhancement factor depends on the content of Au in NP composition. Profiting from the observed enhancement and purity of laser‐synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). The obtained results promise less disturbing studies of biological systems based on good biocompatibility of contamination‐free laser‐synthesized nanomaterials.

  相似文献   


13.
Transmission measurement has been perceived as a potential candidate for label‐free investigation of biological material. It is a real‐time, label‐free and non‐invasive optical detection technique that has found wide applications in pharmaceutical industry as well as the biological and medical fields. Combining transmission measurement with optical trapping has emerged as a powerful tool allowing stable sample trapping, while also facilitating transmittance data analysis. In this study, a near‐infrared laser beam emitting at a wavelength of 1064 nm was used for both optical trapping and transmission measurement investigation of human immunodeficiency virus 1 (HIV‐1) infected and uninfected TZM‐bl cells. The measurements of the transmittance intensity of individual cells in solution were carried out using a home built optical trapping system combined with laser transmission setup using a single beam gradient trap. Transmittance spectral intensity patterns revealed significant differences between the HIV‐1 infected and uninfected cells. This result suggests that the transmittance data analysis technique used in this study has the potential to differentiate between infected and uninfected TZM‐bl cells without the use of labels. The results obtained in this study could pave a way into developing an HIV‐1 label‐free diagnostic tool with possible applications at the point of care .  相似文献   

14.
Optical‐resolution photoacoustic microscopy (OR‐PAM), which has been widely used and studied as a noninvasive and in vivo imaging technique, can yield high‐resolution and absorption contrast images. Recently, metallic nanoparticles and dyes, such as gold nanoparticles, methylene blue, and indocyanine green, have been used as contrast agents of OR‐PAM. This study demonstrates real‐time functional OR‐PAM images with high‐speed alternating illumination at 2 wavelengths. To generate 2 wavelengths, second harmonic generation at 532 nm with an LBO crystal and a pump wavelength of 1064 nm is applied at a pulse repetition rate of 300 kHz. For alternating illumination, an electro‐optical modulator is used as an optical switch. Therefore, the A‐line rate for the functional image is 150 kHz, which is half of the laser repetition rate. To enable fast signal processing and real‐time displays, parallel signal processing using a graphics processing unit (GPU) is performed. OR‐PAM images of the distribution of blood vessels and gold nanorods in a BALB/c‐nude mouse's ear can be simultaneously obtained with 500 × 500 pixels and real‐time display at 0.49 fps.   相似文献   

15.
Aqueous Zn‐ion batteries (ZIBs) have received incremental attention because of their cost‐effectiveness and the materials abundance. They are a promising choice for large‐scale energy storage applications. However, developing suitable cathode materials for ZIBs remains a great challenge. In this work, pioneering work on the designing and construction of aqueous Zn//Na0.33V2O5 batteries is reported. The Na0.33V2O5 (NVO) electrode delivers a high capacity of 367.1 mA h g?1 at 0.1 A g?1, and exhibits long‐term cyclic stability with a capacity retention over 93% for 1000 cycles. The improvement of electrical conductivity, resulting from the intercalation of sodium ions between the [V4O12]n layers, is demonstrated by single nanowire device. Furthermore, the reversible intercalation reaction mechanism is confirmed by X‐ray diffraction, Raman, X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The outstanding performance can be attributed to the stable layered structure and high conductivity of NVO. This work also indicates that layered structural materials show great potential as the cathode of ZIBs, and the indigenous ions can act as pillars to stabilize the layered structure, thereby ensuring an enhanced cycling stability.  相似文献   

16.
Low‐temperature‐processed perovskite solar cells (PSCs), which can be fabricated on rigid or flexible substrates, are attracting increasing attention because they have a wide range of potential applications. In this study, the stability of reduced graphene oxide and the ability of a poly(triarylamine) underlayer to improve the quality of overlying perovskite films to construct hole‐transport bilayer by means of a low‐temperature method are taken advantage of. The bilayer is used in both flexible and rigid inverted planar PSCs with the following configuration: substrate/indium tin oxide/reduced graphene oxide/polytriarylamine/CH3NH3PbI3/PCBM/bathocuproine/Ag (PCBM = [6,6]‐phenyl‐C61‐butyric acid methyl ester). The flexible and rigid PSCs show power conversion efficiencies of 15.7 and 17.2%, respectively, for the aperture area of 1.02 cm2. Moreover, the PSC based the bilayer shows outstanding light‐soaking stability, retaining ≈90% of its original efficiency after continuous illumination for 500 h at 100 mW cm?2.  相似文献   

17.
The capacitance of microsupercapacitors (MSCs) can double if both sides of substrates are used to construct MSCs. Nevertheless, achieving electric connections of MSCs through substrates is a challenge due to the difficulty in precisely positioning each MSC couple that has two of the same MSCs units on two sides. In this work, taking advantage of the synchronous etching on both sides of transparent polyethylene terephthalate substrates by femtosecond laser pulses, a double‐sided configuration is attained with high precision in the alignment of back‐to‐back MSC couples and versatile double‐side MSCs are realized via arbitrary on‐ and through‐substrate connections of MXene MSC units. The MXene double‐side MSC fabricated by the series connection of 12 spiral pattern MXene MSC units with interdigital electrodes of 10 μm width interspace can output a large working voltage of 7.2 V. Additionally, femtosecond laser etching brings the transformation of MXene into titania near‐etched edges with a lateral distance less than 1 µm. Such a small laser‐affected area has little influence on the capacitive performance, which is one of advantages for femtosecond laser over conventional lasers. This research is valuable for one‐step manufacturing of highly integrated MSCs in the field of miniaturized energy storage systems.  相似文献   

18.
The tremendous enhancement factors that surface‐enhanced Raman scattering (SERS) possesses coupled with the flexibility of photonic crystal fibers (PCFs) pave the way to a new generation of ultrasensitive biosensors. Thanks to the unique structure of PCFs, which allows direct incorporation of an analyte into the axially aligned air channels, interaction between the analyte and excitation light could be increased many folds leading to flexible, reliable and sensitive probes that can be used in preclinical or clinical biosensing. SERS‐active PCF probes provide unique opportunity to develop an opto‐fluidic liquid biopsy needle sensor that enables one‐step integrated sample collection and testing for disease diagnosis. Specificity being a key parameter to biosensors, the PCF inside the biopsy needle could be functionalized with targeting moieties to detect specific biomarkers. In this review article, we present some of the most promising recent biosensors based on PCFs including hollow‐core PCFs, suspended‐core PCFs and side‐channel PCFs. We provide a wide range of applications of such platform using Raman spectroscopy, label free SERS or labeled SERS detection and analyze some of the main challenges to be addressed for translating it to a clinically viable next generation sensitive biopsy needle sensing probe.  相似文献   

19.
In this report, an integrated optical platform based on spatial illumination together with laser speckle contrast technique was utilized to measure multiple parameters in live tissue including absorption, scattering, saturation, composition, metabolism, and blood flow. Measurements in three models of tissue injury including drug toxicity, artery occlusion, and acute hyperglycemia were used to test the efficacy of this system. With this hybrid apparatus, a series of structured light patterns at low and high spatial frequencies are projected onto the tissue surface and diffuse reflected light is captured by a CCD camera. A six position filter wheel, equipped with four bandpass filters centered at wavelengths of 650, 690, 800 and 880 nm is placed in front of the camera. Then, light patterns are blocked and a laser source at 650 nm illuminates the tissue while the diffusely reflected light is captured by the camera through the two remaining open holes in the wheel. In this manner, near‐infrared (NIR) and laser speckle images are captured and stored together in the computer for off‐line processing to reconstruct the tissue's properties. Spatial patterns are used to differentiate the effects of tissue scattering from those of absorption, allowing accurate quantification of tissue hemodynamics and morphology, while a coherent light source is used to study blood flow changes, a feature which cannot be measured with the NIR structured light. This combined configuration utilizes the strengths of each system in a complementary way, thus collecting a larger range of sample properties. In addition, once the flow and hemodynamics are measured, tissue oxygen metabolism can be calculated, a property which cannot be measured independently. Therefore, this merged platform can be considered a multiparameter wide‐field imaging and spectroscopy modality. Overall, experiments demonstrate the capability of this spatially coregistered imaging setup to provide complementary, useful information of various tissue metrics in a simple and noncontact manner, making it attractive for use in a variety of biomedical applications.  相似文献   

20.
The reliability and durability of lithium‐ion capacitors (LICs) are severely hindered by the kinetic imbalance between capacitive and Faradaic electrodes. Efficient charge storage in LICs is still a huge challenge, particularly for thick electrodes with high mass loading, fast charge delivery, and harsh working conditions. Here, a unique thermally durable, stable LIC with high energy density from all‐inorganic hydroxyapatite nanowire (HAP NW)‐enabled electrodes and separators is reported. Namely, the LIC device is designed and constructed with the electron/ion dual highly conductive and fire‐resistant composite Li4Ti5O12‐based anode and activated carbon‐based cathode, together with a thermal‐tolerant HAP NW separator. Despite the thick‐electrode configuration, the as‐fabricated all HAP NW‐enabled LIC exhibits much enhanced electrochemical kinetics and performance, especially at high current rates and temperatures. Long cycling lifetime and state‐of‐the‐art areal energy density (1.58 mWh cm?2) at a high mass loading of 30 mg cm?2 are achieved. Benefiting from the excellent fire resistance of HAP NWs, such an unusual LIC exhibits high thermal durability and can work over a wide range of temperatures from room temperature to 150 °C. Taking full advantage of synergistic configuration design, this work sets the stage for designing advanced LICs beyond the research of active materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号