首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
植物物候对气候变化的响应   总被引:44,自引:6,他引:44  
陆佩玲  于强  贺庆棠 《生态学报》2006,26(3):929-929
植物物候的变化可以直观地反映某些气候变化,尤其是气候变暖.植物生长节律的变化引起植物与环境关系的改变.生态系统的物质循环(如水和碳的循环)等过程将随物候而改变.不同种类植物物候对气候变化的响应的差异,会使植物间和动植物间的竞争与依赖关系也发生深刻的变化.目前欧洲、美洲、亚洲等许多地区均有关于春季植物物候提前,秋季物候推迟,使植物的生长季延长,从而提示气候变暖的趋势.植物物候的模拟模型构成生态系统生产力模型的重要部分.  相似文献   

3.
Spatial distribution of immatures of the banana skipper (Erionota thrax L.) and their parasitisms from three major parasitoids were studied in a Cavendish banana plantation from April 2004 to December 2004. Infestation levels and parasitism of E. thrax life stages were recorded from bunched plants (BP), flowering plants (FP), preflowered plants (PF), broad leaf followers (BLF) and narrow leaf followers (NLF), as well as on well managed and poorly managed plants. Mean numbers of the immatures and numbers parasitized from the nine blocks in the plantation were fitted to four dispersion indices. Significant numbers of E. thrax immatures and those parasitized by Ooencyrtus erionotae, Cotesia erionotae and Brachymeria albotibialis were recorded from BLF and PF; no eggs were found on BP and FP. Although infestation was higher on well managed plants, only larval parasitism was significantly different. Three of the four indices indicated that eggs and larvae were random while all the indices showed pupae to be clumped. Parasitized eggs and pupae were clumped (4/4 indices) while 3/4 indices revealed a random pattern for parasitized larvae.  相似文献   

4.
Neotropical savannas (‘cerrados’) of Central Brazil are characterized by the coexistence of a large diversity of tree species with divergent phenological behaviors, which reflect a great diversity in growth strategies. In the present study time behavior and quantitative aspects of shoot growth, shoot mortality, and leaf longevity and production were analyzed in 12 woody species of contrasting leaf phenology, adopting a functional group approach where 12 species were categorized into three functional groups: evergreen, decidous and brevideciduous, according to their leaf phenology. Shoot growth and leaf production were seasonal for the three functional groups, differing in their time of occurrence, but being concentrated during the last months of the dry season. Shoot growth differed between evergreens and deciduous, as well leaf production. Evergreens had higher rates of shoot growth, produced a higher number of leaves and had longer leaf longevity (around 500 days against 300 days in deciduous and brevideciduous). Leaf longevity was associated with patterns of leaf production when accounting for all phenological groups studied. It was possible to identify different patterns of aerial growth in savanna phenological groups, providing evidence of great functional variability amongst the groups studied.  相似文献   

5.
Growth traits, such as body weight and carcass body length, directly affect productivity and economic efficiency in the livestock industry. We performed a genome‐wide linkage analysis to detect the quantitative trait loci (QTL) that affect body weight, growth curve parameters and carcass body length in an F2 intercross between Landrace and Korean native pigs. Eight phenotypes related to growth were measured in approximately 1000 F2 progeny. All experimental animals were subjected to genotypic analysis using 173 microsatellite markers located throughout the pig genome. The least squares regression approach was used to conduct the QTL analysis. For body weight traits, we mapped 16 genome‐wide significant QTL on SSC1, 3, 5, 6, 8, 9 and 12 as well as 22 suggestive QTL on SSC2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16 and 17. On SSC12, we identified a major QTL affecting body weight at 140 days of age that accounted for 4.3% of the phenotypic variance, which was the highest test statistic (F‐ratio = 45.6 under the additive model, nominal = 2.4 × 10?11) observed in this study. We also showed that there were significant QTL on SSC2, 5, 7, 8, 9 and 12 affecting carcass body length and growth curve parameters. Interestingly, the QTL on SSC2, 3, 5, 6, 8, 9, 10, 12 and 17 influencing the growth‐related traits showed an obvious trend for co‐localization. In conclusion, the identified QTL may play an important role in investigating the genetic structure underlying the phenotypic variation of growth in pigs.  相似文献   

6.
7.
二型花柱植株金荞麦繁殖特征   总被引:1,自引:1,他引:0  
开花物候及繁殖分配是植物适应环境的重要因素。对金荞麦开花物候、繁殖分配及策略进行了研究。结果如下:金荞麦的花果期为每年的8—11月,9月集中开花,其集中开花模式有助于吸引昆虫传粉,提高繁殖成功率;金荞麦单花开花持续时间为1—2 d,种群花期均为85d。L型花序花期为15—26d,S型花序花期为14—27d,两者没有显著差异;L型单花序开花数为26—131朵,S型单花序开花数为36—147朵,两者没有显著差异。L型和S型花序开花动态呈现单峰曲线,在花序开花后第11天L型和S型都达到最大值,分别为7.30%和7.20%,且两种花型具有较高的开花同步性,这有助于其繁殖适应性的提高。同一个花型中,雌蕊长、雄蕊长之间存在极显著负相关,但雌雄总长不存在显著差异,表明雌蕊长、雄蕊长可能存在权衡关系;金荞麦的繁殖器官和营养器官生物量在L型和S型间不存在显著差异,但其花生物量与植株生物量表现出极显著正相关关系。金荞麦L型花生物量分配极显著大于S型,而总生物量不存在显著差异,说明金荞麦植株的营养生长与有性繁殖间存在权衡关系。  相似文献   

8.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

9.
入侵植物疣果匙荠不同种群间的功能性状差异 特定环境下植物扩大领域入侵到其他区域时,其功能性状会发生改变。原产地环境已形成植物原有功能性状,当植物居住环境发生改变时,其功能性状亦会随之改变。本文旨在探讨居于常见条件与原产地气候条件的原状态、入侵状态、归化状态下不同疣果匙荠(Bunias orientalis)种群间的性状变异。自8个国家收集了12种疣果匙荠种子(每种状态各4种),将其种植于标准条件下的同质园中,并比较不同状态不同种类的物候、生长、繁殖等功能性状变化。 研究结果表明, 物候不因植物状态而异,但某些原产于常年低温地区的原状态植物并未开花。相比原状态植物,入侵状态植物的叶子更多,这表明了其在积累植被生物量上的活力。短角果的数量和质量,以及其他的生长性状在不同的状态间没有差异,但在不同种群间存在差异。一些功能性状的变异可能是由于原生地对当地条件的长期适应和遗传多样性所致,而其他环境因素在新环境下的差异可能导致了较高的性状变异。  相似文献   

10.
植物的花期物候与花部综合特征均体现了其对生存环境的适应, 是与周围生物及非生物环境长期适应进化产生的结果。大花百合(Lilium concolor var. megalanthum)野外种群中具有雄性植株和两性植株两种不同性别表型。该研究以人为干扰较弱的孤山屯湿地以及人为干扰较强的金川湿地的大花百合为材料, 通过对两种生境间不同性别表型植株的花期物候、花部综合特征以及主要传粉昆虫的访花行为进行比较研究, 探究大花百合的开花及传粉特征在两种生境间的差异。结果表明: 孤山屯湿地内大花百合种群的始花期、盛花期、末花期均早于金川湿地。孤山屯湿地内大花百合的雄性植株在初开时花粉活力高于金川湿地, 而两种生境间的大花百合两性植株的花粉活力总体变化趋势一致。孤山屯湿地内大花百合雄性植株初开时的花蜜含量较高, 而后缓慢下降; 而在金川湿地内则是先增长, 48 h后开始下降。孤山屯湿地内大花百合两性植株的花蜜含量在开花24 h后开始下降, 金川湿地内则是48 h后才开始下降。孤山屯湿地内大花百合无论是雄性植株还是两性植株, 糖含量达到峰值的时间均比金川湿地晚。两种生境中大花百合两性植株的柱头可授性均保持较高水平。两种生境分布的大花百合主要传粉昆虫为中华蜜蜂(Apis cerana)、蓝灰蝶(Everes argiades)和老豹蛱蝶(Argyronome laodice)。孤山屯湿地内中华蜜蜂及蓝灰蝶对大花百合的访花频率均显著低于金川湿地, 但老豹蛱蝶的访花频率显著高于金川湿地。3种访花昆虫中, 中华蜜蜂的访花效率最高, 蓝灰蝶与老豹蛱蝶起到补充授粉的作用。两种生境间大花百合花期物候和花部综合特征的变化与当地小气候和传粉昆虫数量有关, 这种变化是大花百合经过长期适应而产生的。  相似文献   

11.
Many structural patterns have been found to be important for the stability and robustness of mutualistic plant–pollinator networks. These structural patterns are impacted by a suite of variables, including species traits, species abundances, their spatial configuration, and their phylogenetic history. Here, we consider a specific trait: phenology, or the timing of life history events. We expect that timing and duration of activity of pollinators, or of flowering in plants, could greatly affect the species'' roles within networks in which they are embedded. Using plant–pollinator networks from 33 sites in southern British Columbia, Canada, we asked (a) how phenological species traits, specifically timing of first appearance in the network and duration of activity in a network, were related to species'' roles within a network, and (b) how those traits affected network robustness to phenologically biased species loss. We found that long duration of activity increased connection within modules for both pollinators and plants and among modules for plants. We also found that date of first appearance was positively related to interaction strength asymmetry in plants but negatively related to pollinators. Networks were generally more robust to the loss of pollinators than plants, and robustness increased if the models allow new interactions to form when old ones are lost, constrained by overlapping phenology of plants and pollinators. Robustness declined with the loss of late‐flowering plants, which tended to have higher interaction strength asymmetry. In addition, robustness declined with loss of early‐flying or long‐duration pollinators. These pollinators tended to be among‐module connectors. Our results point to networks being limited by early‐flying pollinators. If plants flower earlier due to climate change, plant fitness may decline as they will depend on early emerging pollinators, unless pollinators also emerge earlier.  相似文献   

12.
Understanding species movement in the agroecological system is an important theme in ecology. A mark–release–capture experiment was conducted to study the dispersion behaviour of the Mediterranean fruit fly, Ceratitis capitata (Wied.; Diptera: Tephritidae; Medfly) in northern Israel. Four pairs of pear and citrus orchards were selected for the field experiments. Sterile flies dyed with different colours were released in three seasons during 2015 and 2016, based on the phenological stages of the hosts. The total number of captured marked sterile flies per trap (FT) was approx 300 in both April and August. In November, FT values decreased by about 35% to approximately 200. The wild Medfly that were also captured showed an opposite trend, from an FT of 1.8 and 6.4 in April and August, respectively, to an FT of about 330 in November. Marked sterile flies were captured in both the release and the neighbouring orchard sites. We found that the Medfly migrates from pear to citrus orchards during spring and from citrus to pear during summer, when there are no fruit-bearing trees in the orchards. However, during November, when the wild Medfly population prevails in the area, a clear pattern of migration is hard to identify, perhaps because of a possible interaction with the wild fly's population.  相似文献   

13.
To dissect age-dependent quantitative trait loci (QTL) associated with growth and to examine changes in QTL effects over time, the Gompertz growth model was fitted to longitudinal live weight data on 788 Scottish Blackface lambs from nine half-sib families. QTL were mapped for model parameters and weekly live weights and growth rates using microsatellite markers on chromosomes 1, 2, 3, 5, 14, 18, 20 and 21. QTL significance (using α = 0.05 chromosome-wide significance thresholds, unless otherwise stated) varied with age, and those for growth rate occurred earlier than equivalent QTL for live weight. A chromosome 20 QTL for growth rate was significant from 4 to 9 weeks (maximum significance at 6 weeks) and for maximum growth rate. For live weight, this QTL was significant from 8 to 16 weeks (maximum significance at 12 weeks). A nominally significant chromosome 14 QTL was detected for growth rates from birth to week 2 in the same families and location as an 8-week weight QTL. In addition, at the same position on chromosome 14, a QTL was significant for growth rate for 17–28 weeks (maximum significance at 24 weeks). A chromosome 3 QTL was significant for weights at early ages (birth to week 4) and a growth rate QTL on chromosome 18 was significant from 8 to 12 weeks. Fitting growth curves allowed the combination of information from multiple measurements into a few biologically meaningful variables, and the detection of growth QTL that were not observed from analyses of raw weight data. These QTL describe distinct parts of an animal's growth curve trajectory, possibly enabling manipulation of this trajectory.  相似文献   

14.
Aims Exploring flowering patterns and detecting processes are essential when probing into the nature of reproductive traits during the life history and the interactions among different evolutionary clades. Such patterns are believed to be influenced by many factors, but quantifying these impacts at the community-level remains poorly understood.Methods We investigated the flowering patterns based on long-term herbarium records in a given area from subtropical forest regions in southern China. We obtained 5258 herbarium voucher specimens collected from the Dinghushan National Nature Reserve (DNNR) belonging to 166 families, 943 genera and 2059 species and examined the month when each species was flowering during the period 1920–2007.Important findings The results showed that plants flowered sequentially almost throughout the whole year, showing the characteristics of subtropical evergreen broad-leaved forests. Flowering spectrums of the entire flora and the four life forms exhibited a clear unimodality that is probably typical of subtropical forest communities. Flowering patterns of the DNNR were positively correlated with mean rainfall, mean air temperature and mean sunshine duration. Median flowering dates of the 38 large species-rich families ranged from early April to late August; 25 families exhibited significant unimodal distribution patterns, whereas the remaining families were unclear or bimodal. Median flowering dates of the 10 most species-rich genera ranged from middle May to later July. While the results are consistent with climatic factors playing a general role in flowering patterns, median flowering dates varied significantly among species-rich families and genera, suggesting that phylogenies could provide specific constraints in subtropical forests.  相似文献   

15.
Successful growth of a tree is the result of combined effects of biotic and abiotic factors. It is important to understand how biotic and abiotic factors affect changes in forest structure and dynamics under environmental fluctuations. In this study, we explored the effects of initial size [diameter at breast height (DBH)], neighborhood competition, and site condition on tree growth, based on a 3‐year monitoring of tree growth rate in a permanent plot (120 × 80 m) of montane Fagus engleriana–Cyclobalanopsis multiervis mixed forest on Mt. Shennongjia, China. We measured DBH increments every 6 months from October 2011 to October 2014 by field‐made dendrometers and calculated the mean annual growth rate over the 3 years for each individual tree. We also measured and calculated twelve soil properties and five topographic variables for 384 grids of 5 × 5 m. We defined two distance‐dependent neighborhood competition indices with and without considerations of phylogenetic relatedness between trees and tested for significant differences in growth rates among functional groups. On average, trees in this mixed montane forest grew 0.07 cm year?1 in DBH. Deciduous, canopy, and early‐successional species grew faster than evergreen, small‐statured, and late‐successional species, respectively. Growth rates increased with initial DBH, but were not significantly related to neighborhood competition and site condition for overall trees. Phylogenetic relatedness between trees did not influence the neighborhood competition. Different factors were found to influence tree growth rates of different functional groups: Initial DBH was the dominant factor for all tree groups; neighborhood competition within 5 m radius decreased growth rates of evergreen trees; and site condition tended to be more related to growth rates of fast‐growing trees (deciduous, canopy, pioneer, and early‐successional species) than the slow‐growing trees (evergreen, understory, and late‐successional species).  相似文献   

16.
Plants deploy various ecological strategies in response to environmental heterogeneity. In many forest ecosystems, plants have been reported to have notable inter- and intra-specific trait variation, as well as clear phylogenetic signals, indicating that these species possess a degree of phenotypic plasticity to cope with habitat variation in the community. Savanna communities, however, grow in an open canopy structure and exhibit little species diversification, likely as a result of strong environmental stress. In this study, we hypothesized that the phylogenetic signals of savanna species would be weak, the intraspecific trait variation (ITV) would be low, and the contribution of intraspecific variation to total trait variance would be reduced, owing to low species richness, multiple stresses and relatively homogenous community structure. To test these hypotheses, we sampled dominant woody species in a dry-hot savanna in southwestern China, focusing on leaf traits related to adaptability of plants to harsh conditions (year-round intense radiation, low soil fertility and seasonal droughts). We found weak phylogenetic signals in leaf traits and low ITV (at both individual and canopy-layer levels). Intraspecific variation (including leaf-, layer- and individual-scales) contributed little to the total trait variance, whereas interspecific variation and variation in leaf phenology explained substantial variance. Our study suggests that intraspecific trait variation is reduced in savanna community. Furthermore, our findings indicate that classifying species by leaf phenology may help better understand how species coexist under similar habitats with strong stresses.  相似文献   

17.
18.
19.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号