首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   

2.
In this present study, a fluorescent probe was developed to detect curcumin, which is derived from the rhizomes of the turmeric. We used a simple and economical way to synthesize boron and nitrogen co‐doped carbon dots (BNCDs) by microwave heating. The maximum emission wavelength of the BNCDs was 450 nm at an excitation wavelength of 360 nm. The as‐prepared BNCDs were characterized by multiple analytical techniques such as transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, and infrared spectroscopy. The synthesized carbon nanoparticles had an average particle diameter of 4.23 nm. The BNCDs exhibited high sensitivity to the detection of curcumin at ambient conditions. The changes of BNCDs fluorescent intensity show a good linear relationship with the curcumin concentrations in the range 0.2–12.5 μM. This proposed method has been successfully applied to detect the curcumin in urine samples with the recoveries of 96.5–105.5%.  相似文献   

3.
S,N co‐doped carbon quantum dots (N,S‐CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV–Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S‐CQDs can enhance the chemiluminescence intensity of a luminol–H2O2 system. The possible mechanism of the luminol–H2O2–(N,S‐CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol–H2O2–N,S‐CQDs system. So, a novel flow‐injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5–50 μg ml?1 and a detection limit of 0.12 μg ml?1. The method shows promising application prospects.  相似文献   

4.
Here we report an easy and economical hydrothermal carbonization approach to synthesize the fluorescent nitrogen‐doped carbon dots (N‐CDs) that was developed using citric acid and triethanolamine as the precursors. The synthesis conditions were optimized to obtain the N‐CDs with superior fluorescence performances. The as‐prepared N‐CDs are monodispersed sphere nanoparticles with good water solubility, and exhibited strong fluorescence, favourable photostability and excitation wavelength‐dependent behavior. Furthermore, the in vitro cytotoxicity and cellular labeling of N‐CDs were investigated using the rat glomerular mesangial cells. The results showed the N‐CDs have more inconspicuous cytotoxicity and better biosafety in comparison with ZnSe quantum dots, although both targeted the cells successfully. Considering their admirable photostability, low toxicity and good compatibility, the as‐obtained N‐CDs could have potential applications in biosensors, cellular imaging, and other fields.  相似文献   

5.
Here, we have presented a green and facile strategy to fabricate nitrogen‐doped carbon dots (N‐CDs) and their applications for determination of chlortetracycline (CTC) and sulfasalazine (SSZ). The fluorescent N‐CDs, prepared by one‐step hydrothermal reaction of citric acid and l ‐arginine, manifested numerous excellent features containing strong blue fluorescence, good water‐solubility, narrow size distribution, and a high fluorescence quantum yield (QY) of 38.8%. Based on the fluorescence quenching effects, the as‐synthesized N‐CDs as a fluorescent nanosensor exhibited superior analytical performances for quantifying CTC and SSZ. The linear range for CTC was calculated to be from 0.85 to 20.38 μg ml?1 with a low detection limit of 0.078 μg ml?1. Meanwhile, the linear range for SSZ was estimated to be from 0.34 to 6.76 μg ml?1 with a low detection limit of 0.032 μg ml?1. Therefore, the N‐CDs hold admirable application potential for constructing a fluorescent sensor for pharmaceutical analysis.  相似文献   

6.
A novel and sensitive method for the determination of ceftazidime and cefepime in an active pharmaceutical ingredient (API) has been developed based on the fluorescence quenching of poly(ethylene glycol) (PEG)2000‐capped carbon quantum dots (CQDs) prepared using a chemical oxidation method. The quenching of fluorescence intensity is proportional to the concentration of ceftazidime and cefepime over the range of 0.33–3.30 and 0.24–2.40 µg/mL, respectively. The mode of interaction between PEG2000‐capped CQDs and ceftazidime/cefepime in aqueous solutions was investigated using a fluorescence, UV/Vis and Fourier transform infrared spectrometry (FTIR) at physiological pH. UV/Vis and FTIR spectra demonstrated that ground state compounds were formed through hydrophobic interaction the fluorescence quenching of CQDs caused by ceftazidime and cefepime. The quenching constants decreased with increases in temperature, which was consistent with static quenching. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The fluorescence quenching spectrum of bovine serum albumin (BSA) was investigated in the presence of felodipine (FLD) by spectroscopic methods including fluorescence spectroscopy and UV–Vis absorption spectroscopy. Stern–Volmer quenching was successfully applied and the corresponding thermodynamic parameters, namely enthalpy change (ΔH), free energy change (ΔG) and entropy change (ΔS) at different temperatures (304, 314 and 324 K) were calculated according to the Van't Hoff relation. This revealed that the hydrophobic interaction plays a major role in stabilizing the complex. The fluorescence spectrum of BSA was studied in presence of various concentrations of SDS surfactant. The distance (r) between donor (BSA) and acceptor (FLD) was obtained according to fluorescence resonance energy transfer (FRET). The synchronous fluorescence spectroscopy was used to investigate the effect of FLD on BSA molecule. The result shows that the conformation of BSA was changed in the presence of felodipine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Interaction of 3‐styrylindoles 1–8 viz. 3‐(2‐phenylethenyl‐E)‐NH‐indole (1), 3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (2), 5‐bromo‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (3), 5‐methoxy‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (4), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐NH‐indole (5), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐N‐ethylindole (6), 5‐bromo‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (7) and 5‐methoxy‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (8) with bovine serum albumin (BSA) was examined by UV–vis and steady‐state fluorescence spectroscopy. The fluorescence intensity of 1–8 increases with the increasing BSA concentration. Upon binding with BSA, while 1 and 5–8 show a blue shift in their λf max, 2–4 do not exhibit such behavior. Compounds 1–8 also quench the 345 nm fluorescence of BSA in phosphate buffer (λex, 280 nm). These compounds intercalate in the hydrophobic regions of BSA, as evidenced by the determination of BSA binding site micropolarity using compounds 2–8. As evidenced by the estimation of energy transfer efficiency and distance between the donor (BSA‐Trp‐212) and the acceptor (3‐styrylindoles), the halo‐substituted compounds 3 and 7 interact with BSA more effectively than the other 3‐strylindoles. These compounds have potential for use as neutral and hydrophobic fluorescence probes for examining the microenvironments in proteins, polymers, micelles, etc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A simple one‐step thermal treatment to prepare strong fluorescent sulfur and nitrogen co‐doped graphene quantum dots (SN‐GQD) using citric acid and l ‐cysteine as precursors was developed. The ultra‐weak chemiluminescence (CL) from the reaction of hydrogen peroxide (H2O2) and periodate (IO4?) was significantly enhanced by SN‐GQD in acidic medium. The enhanced CL was induced by excited‐state SN‐GQD (SN‐GQD*), which was produced from the transfer energy of (O2)2* and 1O2 to SN‐GQD and recombination of oxidant‐injected holes and electrons in SN‐GQD. In the presence of tryptophan (Trp), the CL intensity of the SN‐GQD–H2O2–KIO4 system was greatly diminished. This finding was used to design a novel method for determination of Trp in the linear range 0.6–20.0 μM, with a limit of detection (LOD) of 58.0 nM. Furthermore, Hg2+ was detectable in the range 0.1–9.0 μM with a LOD of 64.0 nM, based on its marked enhancement of the SN‐GQD–H2O2–KIO4 CL system. The proposed method was successfully applied to detect Trp in milk and human plasma samples and Hg2+ in drinking water samples, with recoveries in the range 95.7–107.0%.  相似文献   

10.
The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur‐doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3‐mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1–100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0–100.8%) and relative standard deviation (1.24–4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.  相似文献   

11.
The interaction of glucose‐derived carbon quantum dots (CQDs) with silver (Ag) and gold (Au) nanoparticles (NPs) was explored by fluorescence spectroscopy. Both metal NPs cause an efficient quenching of CQD fluorescence, which is likely due to the energy transfer process between CQDs as donors and metal NPs as acceptors. The Stern–Volmer plots were evaluated and corresponding quenching constants were found to be 1.9 × 1010 and 2.2 × 108 M?1 for AgNPs and AuNPs, respectively. The analytical applicability of these systems was demonstrated for turn‐on fluorescence detection of the anti‐cancer drug, 6‐thioguanine. Because the CQD–AgNP system had much higher sensitivity than the CQD–AuNP system, we used it as a selective fluorescence probe in a turn‐on assay of 6‐thioguanine. Under optimum conditions, the calibration graph was linear from 0.03 to 1.0 μM with a detection limit of 0.01 μM. The developed method was applied to the analysis of human plasma samples with satisfactory results.  相似文献   

12.
13.
We investigated the complex interaction between bovine serum albumin (BSA) and curcumin by combining time‐resolved fluorescence and synchronous fluorescence spectroscopy. The interaction was significant and sensitive to fluorescence lifetime and synchronous fluorescence characteristics. Binding of curcumin significantly shortened the fluorescence lifetime of BSA with a bi‐molecular quenching rate constant of kq = 3.17 × 1012 M‐1s‐1. Denaturation by urea unfolded the protein molecule by quenching the fluorescence lifetime of BSA. The tyrosine synchronous fluorescence spectra were blue shifted whereas the position of tryptophan synchronous fluorescence spectra was red shifted during the unfolding process. However, denaturation of urea had little effect on the synchronous fluorescence peak of tyrosine in curcumin‐BSA complex except in the low concentration range; however, it shifted the peak to the red, indicating that curcumin shifted tryptophan moiety to a more polar environment in the unfolded state. Decreases in the time‐resolved fluorescence lifetime and curcumin‐BSA complex during unfolding were recovered during refolding of BSA by a dilution process, suggesting partial reversibility of the unfolding process for both BSA and curcumin‐BSA complex. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

15.
5‐Fluorouracil (5‐FU) has been widely used as a chemotherapy agent in the treatment of many types of solid tumors. Investigation of its antimetabolites led to the development of an entire class of fluorinated pyrimidines. However, the toxicity profile associated with 5‐FU is significant and includes diarrhea, mucositis, hand–foot syndrome and myelosuppression. In aiming at reducing of the side effects of 5‐FU, we have designed and synthesized delocalized lipophilic cations (DLCs) as a vehicle for the delivery of 5‐FU. DLCs accumulate selectively in the mitochondria of cancer cells because of the high mitochondrial transmembrane potential (ΔΨm). Many DLCs exhibited anti‐cancer efficacy and were explored as potential anti‐cancer drugs based on their selective accumulation in the mitochondria of cancer cells. F16, the DLC we used as a vehicle, is a small molecule that selectively inhibits tumor cell growth and dissipates mitochondrial membrane potential. The binding of the conjugate F16–5‐FU to bovine serum albumin (BSA) was investigated using spectroscopic and molecular modeling approaches. Fluorescence quenching constants were determined using the Stern–Volmer equation to provide a measure of the binding affinity between F16–5‐FU and BSA. The activation energy of the interaction between F16–5‐FU and BSA was calculated and the unusually high value was discussed in terms of the special structural block indicated by the molecular modeling approach. Molecular modeling showed that F16–5‐FU binds to human serum albumin in site II, which is consistent with the results of site‐competitive replacement experiments. It is suggested that hydrophobic and polar forces played important roles in the binding reaction, in accordance with the results of thermodynamic experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The targets of limiting global warming levels below 2°C or even 1.5°C set by Paris Agreement heavily rely on bioenergy with carbon capture and storage (BECCS), which can remove carbon dioxide in the atmosphere and achieve net zero greenhouse gas (GHG) emission. Biomass and coal co‐firing with CCS is one of BECCS technologies, as well as a pathway to achieve low carbon transformation and upgrading through retrofitting coal power plants. However, few studies have considered co‐firing ratio of biomass to coal based on each specific coal power plant's characteristic information such as location, installed capacity, resources allocation, and logistic transportation. Therefore, there is a need to understand whether it is worth retrofitting any individual coal power plant for the benefit of GHG emission reduction. It is also important to understand which power plant is suitable for retrofit and the associated co‐firing ratio. In order to fulfill this gap, this paper develops a framework to solve these questions, which mainly include three steps. First, biomass resources are assessed at 1 km spatial resolution with the help of the Geography Information Science method. Second, by setting biomass collection points and linear program model, resource allocation and supply chain for each power plants are complete. Third, is by assessing the life‐cycle emission for each power plant. In this study, Hubei Province in China is taken as the research area and study case. The main conclusions are as follows: (a) biomass co‐firing ratio for each CCS coal power plant to achieve carbon neutral is between 40% and 50%; (b) lower co‐firing ratio sometimes may obtain better carbon emission reduction benefits; (c) even the same installed capacity power plants should consider differentiated retrofit strategy according to their own characteristic. Based on the results and analysis above, retrofit suggestions for each power plant are made in the discussion.  相似文献   

17.
In this paper, two types of carbon quantum dot (CQDs) were prepared using biocompatible l ‐methionine as the carbon source and urea as the nitrogen source and a one‐step hydrothermal treatment. By changing the reaction solvents (deionized (DI) water and dimethylformamide (DMF)), the maximum emission of the resulting CQDs shifted from blue to red light. Specifically, the emission wavelength of the CQDs moved from 433 nm to 625 nm following embedding of a new functional group (–CONH–) on the surface of the CQDs. Photoluminescence quantum yields of the CQDs with blue and red emission reached 64% and 61%, respectively. The R‐CQDs were used to detect metal ions and a linear relationship was demonstrated between ln(F/F0) and Fe3+ concentration in the range 0–0.5 mmol/L with a detection limit of 0.067 μM. Therefore these R‐CQDs have great potential as fluorescent probes for Fe3+ detection. We expect that the excellent water‐soluble, biocompatible and optical properties of the CQDs developed in this work mean that they will be widely used to detect biological cells.  相似文献   

18.
This study explored interactions between m‐phenylenediamine (MPD) and bovine serum albumin (BSA) by spectrophotometry. The Stern‐Volmer equation and UV‐vis spectra examination at different temperatures and pH were used to explore different quenching mechanisms. Under simulated physiological conditions, the binding distance between MPD and BSA was 5.18 nm with a ratio of 1:1. The quenching effect of MPD on BSA intrinsic fluorescence depended strongly on pH, and maximum quenching was observed at alkaline pH. Moreover, the thermodynamic parameters of the MPD‐BSA system showed that the predominant acting force between MPD and BSA was a hydrophobic force. The impact of MPD on the conformation of BSA and the effects of co‐ions on binding interactions were also examined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Batteries with high energy and power densities along with long cycle life and acceptable safety at an affordable cost are critical for large‐scale applications such as electric vehicles and smart grids, but is challenging. Lithium–sulfur (Li‐S) batteries are attractive in this regard due to their high energy density and the abundance of sulfur, but several hurdles such as poor cycle life and inferior sulfur utilization need to be overcome for them to be commercially viable. Li–S cells with high capacity and long cycle life with a dual‐confined flexible cathode configuration by encapsulating sulfur in nitrogen‐doped double‐shelled hollow carbon spheres followed by graphene wrapping are presented here. Sulfur/polysulfides are effectively immobilized in the cathode through physical confinement by the hollow spheres with porous shells and graphene wrapping as well as chemical binding between heteronitrogen atoms and polysulfides. This rationally designed free‐standing nanostructured sulfur cathode provides a well‐built 3D carbon conductive network without requiring binders, enabling a high initial discharge capacity of 1360 mA h g?1 at a current rate of C/5, excellent rate capability of 600 mA h g?1 at 2 C rate, and sustainable cycling stability for 200 cycles with nearly 100% Coulombic efficiency, suggesting its great promise for advanced Li–S batteries.  相似文献   

20.
We report on metal–non‐metal doped carbon dots with very high photoluminescent properties in solution. Magnesium doping to tamarind extract associated with nitrogen‐doping is for the first time reported here which also produce very high quantum yield. Our aim is to develop such dual doped carbon dots which can also serve living cell imaging with easy permeation towards cells and show non‐cytotoxic attributes. More importantly, the chemical signatures of the carbon dots unveiled in this work can support their easy solubilization into water; even in sub‐ambient temperature. The cytotoxicity assay proves the almost negligible cytotoxic effect against human cell lines. Moreover, the use of carbon dots in UV‐active marker and polymer composites are also performed which gave clear distinguishable features of fluorescent nanoparticles. Hitherto, the carbon dots can be commercially prepared without adopting any rigorous methods and also can be used as non‐photo‐bleachable biomarkers of living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号