首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental diabetes is one of the most popular conditions in which to study the relation between neutrophil leukocyte activity and periodontal destruction. The aetiology of neutrophil dysfunction in the gingival tissue associated with diabetes has yet to be clarified. Diabetes in rats decreases neutrophil chemotactic activity in proportion to the severity of this systemic disorder. The present study was carried out to evaluate the relationship between the severity of diabetes and the neutrophil response to two chemotactic agents, and to correlate the observed neutrophil defects with the degree of diabetes. In this study two chemotactic agents, casein (0.2 μl, 2 mg ml?1) or N‐formylmethionylleucylphenylalanine (FMLP; 0.2 μl, 10?4 M ), were placed into the gingival crevices of alloxan‐induced diabetic rats. Gingival biopsies were taken 15 min later and then at 5‐min intervals up to 45 min and investigated by electron microscopy. Adherence and migration were observed in the rats with moderate diabetes 30 min after the application of casein. There was chemotaxis after 35 min of administration of the peptide FMLP. By 40 min neutrophils with pyknotic nuclei were observed. At 45 min neutrophils with a decreased number of granules were present. As the severity of the diabetes increased, the neutrophils degenerated and were structurally distorted. In the rats which had alloxan‐induced diabetes there was abnormal periodontal damage. This damage is thought to be related to dysfunctional neutrophils. These findings many contribute to an answer to the following question: why is there an apparent variability in the susceptibilty of periodontal breakdown in diabetics? Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   

3.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

4.
Anandamide (AEA) exhibits anti-inflammatory effects. However, its role in the periodontal field remains unknown. Here, we found that gingival crevicular fluid contained a detectable level of AEA. The cannabinoid receptors CB1 and CB2 were expressed by human gingival fibroblasts (HGFs), and markedly upregulated under pathological conditions. AEA significantly reduced the production of pro-inflammatory mediators (IL-6, IL-8 and MCP-1) induced by Porphyromonas gingivalis LPS in HGFs, and this effect was attenuated by AM251 and SR144528, selective antagonists of CB1 and CB2, respectively. Moreover, AEA completely blocked LPS-triggered NF-kappaB activation, implying that AEA may regulate hyperinflammatory reactions in periodontitis.  相似文献   

5.
Leukotoxin (LtxA) is a virulence factor secreted by the bacterium Aggregatibacter actinomycetemcomitans, which can cause localized aggressive periodontitis and endocarditis. LtxA belongs to the repeat‐in‐toxin (RTX) family of exotoxins of which other members inflict lysis by formation of membrane pores. Recently, we documented that the haemolytic process induced by another RTX toxin [α‐haemolysin (HlyA) from Escherichia coli] requires P2X receptor activation and consists of sequential cell shrinkage and swelling. In contrast, the cellular and molecular mechanisms of LtxA‐mediated haemolysis are not fully understood. Here, we investigate the effect of LtxA on erythrocyte volume and whether P2 receptors also play a part in LtxA‐mediated haemolysis. We observed that LtxA initially decreases the cell size, followed by a gradual rise in volume until the cell finally lyses. Moreover, LtxA triggers phosphatidylserine (PS) exposure in the erythrocyte membrane and both the shrinkage and the PS‐exposure is preceded by increments in the intracellular Ca2+ concentration ([Ca2+]i). Interestingly, LtxA‐mediated haemolysis is significantly potentiated by ATP release and P2X receptor activation in human erythrocytes. Furthermore, the LtxA‐induced [Ca2+]i increase and following volume changes partially depend on P2 receptor activation. Theseobservations imply that intervention against local P2‐mediated auto‐ and paracrine signalling may prevent LtxA‐mediated cell damage.  相似文献   

6.
Alveolar bone (tooth-supporting bone) erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.  相似文献   

7.
The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific‐pathogen‐free and germ‐free wild‐type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment ofneutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88‐dependent way that correlates with increased neutrophil recruitment as compared with germ‐free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue.  相似文献   

8.
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature‐induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra‐high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra‐small amounts of gingival tissues in combination with liquid chromatography‐tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil‐mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT‐assisted label‐free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.  相似文献   

9.
10.
Leukotoxin (LtxA) is a protein toxin that is secreted from the oral bacterium, Aggregatibacter actinomycetemcomitans. LtxA targets specifically the β(2) integrin, leukocyte function antigen-1 (LFA-1) on white blood cells (WBCs) and causes cell death. LtxA preferentially targets activated WBCs and is being developed as a therapeutic agent for the treatment of WBC diseases such as hematologic malignancies and autoimmune/inflammatory diseases. However, the mechanism by which interaction between LtxA and LFA-1 results in cell death is not well understood. Furthermore, how LtxA preferentially recognizes activated WBCs is not known. We show here that LtxA interacts specifically with LFA-1 in the active (exposed) conformation. In THP-1 monocytes, LtxA caused rapid activation of caspases, but LtxA could overcome the inhibition of caspases and still intoxicate. In contrast, inhibiting the vesicular trafficking pathway or cathepsin D release from the lysosome resulted in significant inhibition of LtxA-mediated cytotoxicity, indicating a more potent, lysosomal mediated cell death pathway. LtxA caused rapid disruption of the lysosomal membrane and release of lysosomal contents into the cytosol. Binding of LtxA to LFA-1 resulted in the internalization of both LtxA and LFA-1, with LtxA localizing specifically to the lysosomal compartment. To our knowledge, LtxA represents the first bacterial toxin shown to localize to the lysosome where it induces rapid cell death.  相似文献   

11.
12.
In this study we examined the importance of neutrophil adherence in neutrophil-mediated endothelial cell injury. Phorbol myristate acetate (PMA)-activated neutrophils from a patient with a congenital defect in neutrophil adherence (Gp-150 deficiency) and PMA-activated normal neutrophils pretreated with monoclonal antibody (MoAb) 60.3 were used. Both Gp-150-deficient and MoAb 60.3-treated normal neutrophils failed to adhere to cultured human umbilical vein endothelial cell (HEC) monolayers when activated by PMA (adherence less than 10% with patient and MoAb 60.3-treated cells compared with 53 +/- 3% with normal cells). The addition of PMA-activated normal neutrophils to 51Cr-labeled HEC monolayers failed to induce significant 51Cr release but did produce marked HEC detachment (percentage of detachment 50 +/- 3 at 6 hr). In marked contrast, PMA-activated Gp-150-deficient neutrophils failed to induce significant HEC detachment (percentage of detachment zero (0) at 6 hr). Moreover, the addition of MoAb 60.3 to normal neutrophils inhibited neutrophil-mediated HEC detachment in a time- and dose-dependent fashion. Non-lytic HEC detachment was determined to be largely oxygen radical independent, because PMA-activated chronic granulomatous disease neutrophils and PMA-activated normal neutrophils produced similar disruption of HEC monolayers. Soybean trypsin inhibitor, a chloromethylketone elastase inhibitor, and autologous serum all failed to inhibit neutrophil-mediated HEC detachment. From these studies there is no evidence that nonlytic HEC detachment by PMA-activated neutrophils is mediated by the neutrophil-derived proteases, elastase and cathepsin G. Neutrophil-mediated HEC detachment also required intact neutrophils, because postsecretory medium from PMA-activated normal neutrophils and a suspension of frozen-thawed PMA-activated normal neutrophils were without effect. These in vitro studies indicate that the neutrophil cell surface glycoprotein Gp-150 is required for nonlytic HEC detachment by intact PMA-activated neutrophils.  相似文献   

13.
Cigarette smoke, a complex mixture of over 7000 chemicals, contains many components capable of eliciting oxidative stress, which may induce smoking-related disorders, including oral cavity diseases. In this study, we investigated the effects of whole (mainstream) cigarette smoke on human gingival fibroblasts (HGFs). Cells were exposed to various puffs (0.5-12) of whole cigarette smoke and oxidative stress was assessed by 2',7'-dichlorofluorescein fluorescence. The extent of protein carbonylation was determined by use of 2,4-dinitrophenylhydrazine with both immunocytochemical and Western immunoblotting assays. Cigarette smoke-induced protein carbonylation exhibited a puff-dependent increase. The main carbonylated proteins were identified by means of two-dimensional electrophoresis and MALDI-TOF mass spectrometry (redox proteomics). We demonstrated that exposure of HGFs to cigarette smoke decreased cellular protein thiols and rapidly depleted intracellular glutathione (GSH), with a minimal increase in the intracellular levels of glutathione disulfide and S-glutathionylated proteins, as well as total glutathione levels. Mass spectrometric analyses showed that total GSH consumption is due to the export by the cells of GSH-acrolein and GSH-crotonaldehyde adducts. GSH depletion could be a mechanism for cigarette smoke-induced cytotoxicity and could be correlated with the reduced reparative and regenerative activity of gingival and periodontal tissues previously reported in smokers.  相似文献   

14.
Periodontitis is an inflammatory disease affecting the connective tissue and supporting bone surrounding the teeth. In periodontitis, human gingival fibroblasts (HGFs) synthesize IL‐1β, causing a progressive inflammatory response. Flavones demonstrate a variety of biological activity: among others, they possess anti‐inflammatory properties. Myricetin is a flavone with a strong anti‐inflammatory activity. The objective of this study was to evaluate the effect of the flavonoid myricetin on HGFs under inflammatory conditions induced by lipoteichoic acid (LTA). the effect of myricetin on HGFs was assessed by measuring cell viability, signaling pathways and IL‐1β expression and synthesis. It was found that, over time, myricetin did not affect cell viability. However, it inhibited activation of p38 and extracellular‐signal‐regulated kinase‐1/2 in LTA‐treated HGFs and also blocked IκB degradation and cyclooxygenase‐2 and prostaglandin E2 synthesis and expression. These findings suggest that myricetin has therapeutic effects in the form of controlling LTA‐induced inflammatory responses.  相似文献   

15.
Porphyromonas gingivalis (P. gingivalis) is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. P. gingivalis or its components such as lipopolysaccharide (LPS) upregulate the production of various inflammatory cytokines including interleukin (IL)-1 and IL-6 in HGFs. Recently, we demonstrated that the binding of P. gingivalis LPS to Toll-like receptor 4 (TLR4) on HGFs activates various second messenger systems (Biochem. Biophys. Res. Commun. 273, 1161-1167, 2000). In the present study, we examined the level of TLR4 expression on HGFs by flow cytometric analysis (FACS), and studied the levels of IL-1 and IL-6 in the culture medium upon LPS stimulation of HGFs by enzyme-linked immunosorbent assay (ELISA). Upon stimulation by P. gingivalis LPS for 24 h, HGFs that expressed a high level of TLR4 secreted significantly higher levels of IL-1 and IL-6 than HGFs that expressed a low level of TLR4. On the other hand, after stimulation with P. gingivalis LPS for 24 h, the level of TLR4 on the surface of HGFs decreased. These results suggest that the level of TLR4 expression on HGFs reflects the extent of inflammation in the gingival tissue, and that P. gingivalis LPS downregulates TLR4 expression on HGFs. These findings may be used to control inflammatory and immune responses in periodontal disease.  相似文献   

16.
Involvement of the endocannabinoid system in periodontal healing   总被引:1,自引:0,他引:1  
Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.  相似文献   

17.
Arachidonic acid (AA) metabolism is implicated as an intracellular and/or intercellular second messenger system for the transmission of cytokine-initiated signals that affect neutrophils and mediate systemic toxicity. The purpose of the present study is to ascertain if cytokines that are known to affect neutrophil function in vivo and in vitro directly stimulate neutrophil AA metabolism in vitro. The recombinant human cytokines multi-colony stimulating factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 1, tumor necrosis factor (TNF), and interleukin 6 and the calcium ionophore A23187 were incubated with purified 14C-AA radiolabeled human peripheral blood neutrophils and the effects were assayed by one- and two-dimensional thin layer lipid chromatography. None of the cytokines appeared to induce the release of cell-incorporated AA or to increase the level of radiolabeled phosphatidic acid. TNF induces severe systemic toxicity that is inhibited by cyclooxygenase inhibitors, which suggests a role for AA metabolites in the pathophysiologic effects of TNF; we have confirmed that TNF and endotoxin act synergistically to induce indomethacin-inhibitable fatal shock in rats. However, when in 3H-AA radiolabeled human neutrophils were incubated with TNF in kinetic, cold-chase, and TNF preincubation experiments, TNF was not found to increase AA metabolism, although changes in the intracellular neutral lipid content were noted. GM-CSF, which has been reported by previous investigators to directly induce the release of AA, did not release neutrophil-associated 3H-AA. In conclusion, the direct release of AA from membrane-associated phospholipids does not appear to be a major second messenger pathway for cytokine-initiated activation of neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Porphyromonas gingivalis is a major pathogen in the initiation and progression of periodontal disease, which is recognized as a common complication of diabetes. ICAM‐1 expression by human gingival fibroblasts (HGFs) is crucial for regulating local inflammatory responses in inflamed periodontal tissues. However, the effect of P. gingivalis in a high‐glucose situation in regulating HGF function is not understood. The P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the modulation of HGF ICAM‐1 expression by invasion of high‐glucose‐treated P. gingivalis (HGPg). A high‐glucose condition upregulated fimA mRNA expression in P. gingivalis and increased its invasion ability in HGFs. HGF invasion with HGPg induced increases in the expression of ICAM‐1. By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of p38 MAPK and Akt pathways is critical for HGPg‐induced ICAM‐1 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that HGPg invasion increases NF‐κB‐ and Sp1‐DNA‐binding activities in HGFs. Inhibition of NF‐κB and Sp1 activations blocked the HGPg‐induced ICAM‐1 promoter activity and expression. The effect of HGPg on HGF signalling and ICAM‐1 expression is mediated by CXC chemokine receptor 4 (CXCR4). Our findings identify the molecular pathways underlying HGPg‐dependent ICAM‐1 expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.  相似文献   

19.
Streptococcus pneumoniae is the most common causative agent of community-acquired pneumonia throughout the world, with high morbidity and mortality rates. A major feature of pneumococcal pneumonia is abundant neutrophil infiltration. In this study, we identified S. pneumoniae α-enolase as a neutrophil binding protein in ligand blot assay and mass spectrometry findings. Scanning electron microscopic and fluorescence microscopic analyses also revealed that S. pneumoniae α-enolase induces formation of neutrophil extracellular traps, which have been reported to bind and kill microbes. In addition, cytotoxic assay results showed that α-enolase dose-dependently increased the release of extracellular lactate dehydrogenase from human neutrophils as compared with untreated neutrophils. Furthermore, an in vitro cell migration assay using Chemotaxicell culture chambers demonstrated that α-enolase possesses neutrophil migrating activity. Interestingly, bactericidal assay findings showed that α-enolase increased neutrophil extracellular trap-dependent killing of S. pneumoniae in human blood. Moreover, pulldown assay and mass spectrometry results identified myoblast antigen 24.1D5 as an α-enolase-binding protein on human neutrophils, whereas flow cytometric analysis revealed that 24.1D5 was expressed on human neutrophils, but not on human monocytes or T cells. Together, our results indicate that α-enolase from S. pneumoniae increases neutrophil migrating activity and induces cell death of human neutrophils by releasing neutrophil extracellular traps. Furthermore, we found that myoblast antigen 24.1D5, which expressed on the surface of neutrophils, bound to α-enolase of S. pneumoniae.  相似文献   

20.
The aim of this study was to evaluate the local changes in the crevicular gingival fluid (CGF) determined by the inflammatory and immune response in periodontitis and gingivitis. The selected patients presented gingivitis (n = 9) and periodontitis: aggressive periodontitis (n = 21) and adult periodontitis (n = 8). The crevicular fluid was provided from the gingival and periodontal pocket. The measurement of PMN-elastase in the CGF, using the ELISA method, showed a significant (p < 0.01) increase of the enzyme concentration in the aggressive periodontitis group (62.1 +/- 3.91 ng/ml) comparing to the gingivitis group (33.04 +/- 4.14 ng/ml) but also the increase (p < 0.05) of this enzyme in the adult periodontitis (43.6 +/- 2.16 ng/ml) comparing to the gingivitis, which indicated the evolutive aspects of the inflammatory reaction in these diseases. The increased production of PMN-E is the result of the activation of polymorphonuclear cells (PMN) as a reaction of the microbial attack. Degranulation and release of proteolytic enzymes including elastase, which present cytotoxic capacities, follow the activation of neutrophil granulocytes (PMN). The activated granulocytes release proinflammatory cytokines IL-1, TNF-alpha which augment the inflammatory immune response. The aggressive periodontitis group showed an increased CGF level of IL-1 (780.4 +/- 104 pg/ml) comparing to the gingivitis group (275.5 +/- 78 pg/ml) (p < 0.01). TNF-alpha also presented an increased level (p < 0.01) in the aggressive periodontitis group (16.3 +/- 2.3 pg/ml) comparing to the gingivitis group (4.1 +/- 1.2 pg/ml) as a consequence of the periodontium destruction and of the tissular necrosis in the former group. In conclusion, our study shows a significant increase of the PMN-elastase and proinflammatory cytokines level in CGF of patients with gingivitis and periodontitis. The intensity of the inflammatory response in these diseases is strongly correlated to the activation of the neutrophil granulocytes which release these biological active molecules that could be used as evolution markers of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号