首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.  相似文献   

4.
Triple negative breast cancer accounts for 15%–20% of all breast carcinomas and is clinically characterized by an aggressive phenotype and poor prognosis. Triple negative tumors do not benefit from targeted therapies, so further characterization is needed to define subgroups with potential therapeutic value. In this work, the proteomes of 125 formalin-fixed paraffin-embedded samples from patients diagnosed with non-metastatic triple negative breast cancer were analyzed using data-independent acquisition + in a LTQ-Orbitrap Fusion Lumos mass spectrometer coupled to an EASY-nLC 1000. 1206 proteins were identified in at least 66% of the samples. Hierarchical clustering, probabilistic graphical models and Significance Analysis of Microarrays were combined to characterize proteomics-based molecular groups. Two molecular groups were defined with differences in biological processes such as glycolysis, translation and immune response. These two molecular groups showed also several differentially expressed proteins. This clinically homogenous dataset may serve to design new therapeutic strategies in the future.  相似文献   

5.
BackgroundTriple negative breast cancer (TNBC) has the worst prognosis amongst all subtypes. Studies have shown that the achievement of pathologic complete response in the breast and axilla correlates with improved survival. The aim of this study was to identify clinical or pathological features of real-life TNBC patients with a higher risk of early relapse.Materials and methodsSingle-centre retrospective analysis of 127 women with TNBC, stage II–III, submitted to neoadjuvant treatment and surgery between January 2016 and 2020. Multivariate Cox regression analysis for disease free survival (DFS) at 2 years was performed and statistically significant variables were computed into a prognostic model for early relapse.ResultsAfter 29 months of median follow-up, 105 patients (82.7%) were alive and, in total, 38 patients (29.9%) experienced recurrence. The 2-year DFS was 73% (95% CI: 21.3–22.7). In multivariate analysis, being submitted to neoadjuvant radiotherapy [HR 2.8 (95% CI: 1.2–6.4), p = 0.017] and not achieving pathologic complete response [HR 0.3 (95% CI: 0.1–1.7), p = 0.011] were associated with higher risk of recurrence. In our prognostic model, the presence of at least one of these variables defined a subgroup of patients with a worse 2-year DFS than those without these features (59% vs. 90%, p < 0.001, respectively).ConclusionsIn this real-life non-metastatic TNBC cohort, neoadjuvant radiotherapy (performed due to insufficient clinical response to neoadjuvant chemotherapy or significant toxicity) impacted as an independent prognostic factor for relapse along with the absence of pathologic complete response identifying a subgroup of higher risk patients for early relapse that might merit a closer follow-up.  相似文献   

6.
Unlike other types of breast cancers (BCs), no specific therapeutic targets have been established for triple negative breast cancer (TNBC). Therefore, chemotherapy and radiotherapy are the only available adjuvant therapeutic choices for TNBC. New emerging reports show that TNBC is associated with higher numbers of intratumoral tumor infiltrating lymphocytes. This is indicative of host anti-TNBC immune surveillance and suggesting that immunotherapy can be considered as a therapeutic approach for TNBC management. Recent progress in molecular mechanisms of tumor-immune system interaction and cancer vaccine development studies, fast discoveries and FDA approvals of immune checkpoint inhibitors, chimeric antigen receptor T-cells, and oncolytic virotherapy have significantly attracted attention and research directions toward the immunotherapeutic approach to TNBC. Here in this review different aspects of TNBC immunotherapies including the host immune system-tumor interactions, the tumor microenvironment, the relevant molecular targets for immunotherapy, and clinical trials in the field are discussed.  相似文献   

7.
The treatment of triple-negative breast cancer (TNBC) remains a major challenge. The present study aimed to throw more light on the role of copper (I)-nicotinate complex (CNC) as an antitumor as well as a proapoptotic agent. In this study, the HCC-1806 cell line was used as a model for TNBC. Cell cycle, apoptosis assay, and programmed cell death protein-1 were investigated by flowcytometry. Besides, the comet assay was performed using a fluorescence microscope. The enzyme-linked immunosorbent assay technique was used for the detection of phospho-Chk1 at ser 317 and caspase-3. Moreover, the gene expression of survivin was identified by real-time polymerase chain reaction. Finally, superoxide dismutase (SOD) was calorimetrically assayed. The viability of HCC-1806 cells treated with CNC was decreased in a dose-dependent manner. The tendency for apoptotic machinery was observed through the increase in the sub G0 peak, the percentage of early and late apoptotic phases, and the elevation in caspase-3 levels associated with a downregulation of the survivin gene expression. The antioxidant property of the complex, reflected by elevated SOD activity, may contribute to mediate the cell death pathways. Low concentrations of CNC were found to favor the apoptotis-mediated mechanism. However, one cannot neglect the abundance of cell necrosis–mediated death of cells via CNC, especially at higher concentrations.  相似文献   

8.
9.
Primary TNBCs are treated as if they were a single disease entity, yet it is clear they do not behave as a single entity in response to current therapies. Recently, we reported that statins might have a potential benefit for TNBCs associated with ets-1 overexpression. The aim of this study is to investigate the role of PTEN loss in the effects of statin on TNBC cells. In addition, we analyze the relationship between AKT downstream pathways and the effects of statin on TNBC cells. We investigated the effect of a statin on TNBC cells and analyzed the association of PI3K pathways using various TNBC cells in terms of PTEN loss and AKT pathways. Simvastatin treatments resulted in decreased cell viabilities in various TNBC cell lines. Compared with PTEN wild-type TNBC cells, PTEN mutant-type TNBC cells showed a decreased response to simvastatin. Expressions of phosphorylated Akt and total Akt showed an inverse relationship with PTEN expression. The TNBC cell lines, which showed increased expression of p-Akt, appeared to attenuate the expression of p-Akt by PTEN loss in simvastatin-treated TNBC cells. The Akt inhibitor, LY294002, augmented the effect of simvastatin on PTEN wild-type TNBC cells. Simvastatin induces inhibition of TNBC cells via PI3K pathway activation.  相似文献   

10.
Triple-negative breast cancer (TNBC) represents 15% of breast carcinomas. More than 80% of women with a breast cancer associated with a breast cancer type 1 (BRCA1) mutation develop a TNBC. microRNAs (miRNAs) play critical roles in diverse biological processes and are aberrantly expressed in several human neoplasms including breast cancer, where they function as actors of tumor onset, behavior, and progression. However, an extensive microRNA profile has not yet been determined for TNBC. Taqman low-density arrays (TLDAs) were used to screen the expression level of 667 miRNAs in TNBC versus normal breast tissues. Our TLDA results revealed 20 differentially expressed miRNAs among which 14 (10 upregulated and four downregulated) were confirmed by an individual quantitative real-time polymerase chain reaction. Interestingly, a novel link between BRCA1 status and miRNA expression level was identified through miR-96 and miR-10b that were very important discriminators between TNBC with mutated BRCA1 and TNBC with wild type BRCA1. This study promises discoveries of new pathological pathways at work in this dreadful disease and clearly warrants validation in large prospective studies with the aim of identifying novel biomarkers for diagnosis and targets for clinical interventions.  相似文献   

11.
Triple negative breast cancer (TNBC) is a heterogeneous subclass of breast cancer (BC) distinguished by lack of hormone receptor expression. It is highly aggressive and difficult to treat with traditional chemotherapeutic regimens. Targeted-therapy using microRNAs (miR) has recently been proposed to improve the treatment of TNBC in the early stages. Here, we explore the roles of miR-483-3p/HDAC8 HDAC8 premiR-vector on tumorigenicity in TNBC patients. Clinical TNBC specimens and three BC cell lines were prepared. miR-483-3p and expression levels were measured using quantitative real-time polymerase chain reaction. Cell cycle progression was assessed by a flow-cytometry method. We also investigated cell proliferation by 3-2, 5-diphenyl tetrazolium bromide assay and colony formation assay. We used a to overexpress miR-483-3p, and a HDAC8-KO-vector for knocking out the endogenous production of HDAC8. Our data showed significant downregulation of miR-483-3p expression in TNBC clinical and cell line samples. The HDAC8 was also upregulated in both tissue specimens and BC cell lines. We found that increased levels of endogenous miR-483-3p affects tumorigenecity of MDA-MB-231. Downregulation of HDAC8 using the KO-vector showed the same pattern. Our results revealed that the miR-483-3p suppresses cellular proliferation and progression in TNBC cell lines via targeting HDAC8. Overall, our outcomes demonstrated the role of miR-483-3p as a tumor suppressor in TNBC and showed the possible mechanism via HDAC8. In addition, targeted treatment of TNBC with miR-483-3p might be considered in the future.  相似文献   

12.
分化聚类36(cluster of differentiation 36,CD36)是一种位于细胞表面的膜蛋白受体,可以结合并转运脂肪酸。内质网膜蛋白4B (Nogo-B)在肝脏中调控脂肪酸代谢而影响肝癌的发展。目前并不清楚CD36和Nogo-B的相互作用是否能够影响乳腺癌细胞的增殖和迁移。本研究在三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞中同时干预CD36与Nogo-B的表达来探索它们对细胞增殖与迁移的影响。结果表明在三阴性乳腺癌细胞中,单独抑制CD36或Nogo-B的表达都能够抑制细胞的增殖与迁移;同时抑制CD36与Nogo-B的表达时,这种抑制效果更加明显,且Vimentin、B细胞淋巴瘤-2(B-cell lympoma-2,BCL2)和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达受到抑制。在小鼠移植瘤模型中,E0771细胞转染CD36或Nogo-B的siRNA后成瘤能力降低;同时敲减CD36和Nogo-B时,肿瘤生长速度显著减慢。机制研究发现,抑制CD36和Nogo-B表达能够抑制脂肪酸结合蛋白4(fatty acid binding protein 4,FABP4)和脂肪酸转运蛋白4(fatty acid transport protein 4,FATP4) mRNA的含量,同时CD36和Nogo-B过表达刺激的细胞增殖被FABP4的siRNA降低,预示着抑制乳腺癌细胞中CD36与Nogo-B的表达可能通过抑制脂肪酸的吸收和转运而抑制细胞的生长和迁移。此外,抑制CD36与Nogo-B的表达可激活P53-P21-Rb信号通路,参与抑制CD36与Nogo-B表达而抑制的细胞增殖与迁移。本研究证明同时抑制CD36和Nogo-B的表达能够协同抑制三阴性乳腺癌细胞的增殖和迁移,为临床抗三阴性乳腺癌药物的开发提供了新的靶点。  相似文献   

13.
Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.  相似文献   

14.
mRNA profiles of circulating tumour cells (CTCs) were analysed in patients with triple‐negative breast cancer (TNBC) (pts) before (BT) and after therapy (AT) to identify additional treatment options. 2 × 5 mL blood of 51 TNBC pts and 24 non‐TNBC pts (HR+/HER2?; HR?/HER2+) was analysed for CTCs using the AdnaTest EMT‐2/Stem Cell Select?, followed by mRNA isolation and cDNA analysis for 17 genes by qPCR PIK3CA, AKT2, MTOR and the resistance marker AURKA and ERCC1 were predominantly expressed in all breast cancer subtypes, the latter ones especially AT. In TNBC pts, ERBB3, EGFR, SRC, NOTCH, ALK and AR were uniquely present and ERBB2+/ERBB3 + CTCs were found BT and AT in about 20% of cases. EGFR+/ERBB2+/ERBB3 + CTCs BT and ERBB2+/ERBB3 + CTCs AT significantly correlated with a shorter progression‐free survival (PFS; P = 0.01 and P = 0.02). Platinum‐based therapy resulted in a reduced PFS (P = 0.02) and an induction of PIK3CA expression in CTCs AT. In non‐TNBC pts, BT, the expression pattern in CTCs was similar. AURKA+/ERCC1 + CTCs were found in 40% of HR?/HER2 + pts BT and AT. In the latter group, NOTCH, PARP1 and SRC1 were only present AT and ERBB2 + CTCs completely disappeared AT. These findings might help to predict personalized therapy for TNBC pts in the future.  相似文献   

15.
Triple negative breast cancer (TNBC) is an aggressive cancer, particularly prone to metastasis and is associated with poor survival outcomes. The key to unravelling the aggressiveness of TNBC lies in decoding the mechanism by which it metastasises. Cofilin-1 is a well-studied member of the cofilin family, involved in actin depolymerisation. Studies have described the diverse roles of cofilin-1 including cell motility, apoptosis and lipid metabolism. Levels of cofilin-1 have been shown to be increased in many different types of malignant cells, with increased cofilin-1 protein levels associated with poor prognosis in patients with TNBC. Extracellular vesicles (EVs) are microvesicles typically around 100 nm in size, found in all biological fluids examined to date (Lötvall et al., 2014). Proteomic studies on extracellular vesicles (EVs) have shown that cofilin-1 is amongst the most frequently detected. Moreover, decreased levels of cofilin-1 potentially inhibit the release of EVs from cells. Additionally, Cofilin-1 is essential for the maturation of EVs and may also play a key role in the establishment of the pre-metastatic niche, thus promoting tumour cell migration. Further work into the exact mechanism by which cofilin-1 advances TNBC metastasis, may potentially prevent disease progression and improve outcomes for patients with TNBC.  相似文献   

16.
Herein, we investigated efflux pumps-mediated talazoparib-resistance in the treatment of triple-negative breast cancer (TNBC). Furthermore, we produced a novel talazoparib-solid lipid nanoparticles (SLNs) and then explored in vitro therapeutic efficacy of talazoparib-SLNs to overcome talazoparib-resistance in TNBC cells. Talazoparib-SLNs formulation was produced and then characterized. Calcein and Rho-123 were used to analyze the functional activity of drug efflux pumps in these cells. Additionally, RT-PCR, western blot and immunofluorescence analysis were used to detect the messenger RNA, and protein expression level, and cellular localization of the multidrug resistance (MDR1), breast cancer resistance protein (BCRP), and MRP1. We found that talazoparib efflux was mediated by BCRP and MRP1 pumps in TNBC cells. Talazoparib-SLNs could significantly enhance therapeutic efficacy of talazoparib. Furthermore, talazoparib-SLNs were more effective in the suppression of MDR1, BCRP, and MRP1 gene and protein expression levels than talazoparib. Consequently, this study suggests that talazoparib-SLNs formulation represents a promising therapeutic carrier to reverse MDR-mediated resistance in TNBC.  相似文献   

17.
The ASCENT trial reports impressive results with a median overall survival (OS) increased from 6.7 months to 12.1 months with sacituzumab govitecan over single-agent chemotherapy, in metastatic triple negative breast cancer (TNBC) patients in second and subsequent line of therapy.We described design features in the ASCENT trial casting doubt on the extrapolation of the reported results to real world patients. First, the open-label design may exaggerate the effect of the experimental arm. Second, the choice of progression-free-survival (PFS) as a primary endpoint, debatable in metastatic TNBC, can lead to biases: early stopping rules may exaggerate efficacy results and informative censoring can bias PFS results interpretation. Third, the control arm was not a complete “physician''s choice”: it was restricted, preventing from using effective agents in this setting, and leading to a substandard control arm. Fourth and lastly, dose reduction and supportive care recommendations for the experimental drug were different between the trial protocol and the FDA labels, and favored the experimental arm as compared with the control arm.In conclusion, we described four design features in the ASCENT trial having the potential to favor the experimental arm or to penalize the control arm. It thus remains uncertain in which extent the reported outcomes will translate in the real world. Efforts should be made to avoid trial biases that will eventually prevent to conclude about their true impact in patients when applied broadly.  相似文献   

18.
19.
20.
Tamoxifen treatment is important assistant for estrogen-receptor-positive breast cancer (BRCA) after resection. This study aimed to identify signatures for predicting the prognosis of patients with BRCA after tamoxifen treatment. Data of gene-specific DNA methylation (DM), as well as the corresponding clinical data for the patients with BRCA, were obtained from The Cancer Genome Atlas and followed by systematic bioinformatics analyses. After mapping these DM CPG sites onto genes, we finally obtained 352 relapse-free survival (RFS) associated DM genes, with which 61,776 gene pairs were combined, including 1,614 gene pairs related to RFS. An 11 gene-pair signature was identified to cluster the 189 patients with BRCA into the surgical low-risk group (136 patients) and high-risk group (53 patients). Then, we further identified a tamoxifen-predictive signature that could classify surgical high-risk patients with significant differences on RFS. Combining surgical-only prognostic signature and tamoxifen-predictive signature, patients were clustered into surgical-only low-risk group, tamoxifen nonbenefit group, and tamoxifen benefit group. In conclusion, we identified that the gene pair PDHA2–APRT could serve as a potential prognostic biomarker for patients with BRCA after tamoxifen treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号