首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen fibrils type I display a typical banding pattern, so-called D-periodicity, of about 67 nm, when visualized by atomic force or electron microscopy imaging. Herein we report on a significant shortening of the D-period for human corneal collagen fibrils type I (21 ± 4 nm) upon air-drying, whereas no changes in the D-period were observed for human scleral collagen fibrils type I (64 ± 4 nm) measured under the same experimental conditions as the cornea. It was also found that for the corneal stroma fixed with glutaraldehyde and air-dried, the collagen fibrils show the commonly accepted D-period of 61 ± 8 nm. We used the atomic force microscopy method to image collagen fibrils type I present in the middle layers of human cornea and sclera. The water content in the cornea and sclera samples was varying in the range of .066–.085. Calculations of the D-period using the theoretical model of the fibril and the FFT approach allowed to reveal the possible molecular mechanism of the D-period shortening in the corneal collagen fibrils upon drying. It was found that both the decrease in the shift and the simultaneous reduction in the distance between tropocollagen molecules can be responsible for the experimentally observed effect. We also hypothesize that collagen type V, which co-assembles with collagen type I into heterotypic fibrils in cornea, could be involved in the observed shortening of the corneal D-period.  相似文献   

2.
The influence of fresh water on potential habitat occupancy of early life‐history stages of euryhaline Gulf killifish Fundulus grandis was determined by evaluating fertilization of freshwater‐spawned eggs and subsequent survival of embryos and larvae in comparison with saline water (salinity 7). Overall per cent fertilization of eggs was low (mean ± s.e . = 20·21 ± 0·03%). Embryo survival was greater in saline water, but hatching rate (mean ± s.e . = 81·6 ± 0·1%) and post‐hatch survival of larvae in fresh water (mean ± s.e . = 74·5 ± 0·1%) was relatively high. Therefore, the relative limitation of fresh water on habitat distribution of F. grandis changes with development, stimulating further questions on factors that may constrain habitat distribution of euryhaline fishes.  相似文献   

3.
Potential cold resistance of non-diapause eggs and first instar larvae of Osmoderma eremita (Coleoptera, Cetoniidae, Trichiinae) during embryogenesis and post-embryonic growth was assessed by measuring individual supercooling points (SCP): sterile eggs had a mean SCP of −24.3 ± 2.0 °C; fertilized newly laid eggs a mean SCP of −23.4 ± 3.2 °C and eggs about to hatch a mean SCP of −9.2 ± 2.9 °C. Water absorption by fertilized eggs is a necessary requirement for the development of the embryo and results in an increase in weight and water content: fertilized newly laid eggs had a mean fresh weight of 10.687 ± 1.072 mg and a mean water content (expressed as a percentage of the dry weight) of 79.5 ± 10.83%; eggs about to hatch had a mean fresh weight of 19.127 ± 3.183 mg and a mean water content of 250.10 ± 74.15%. The ex-ovo larvae, hatched 30 days after oviposition, had a mean SCP of −10.1 ± 3.6 °C (no significant difference with eggs about to hatch) and had gained in weight (24.845 ± 3.911 mg) and in water content (499.72 ± 55.49%). Feeding 1st instar larvae had a decreased supercooling ability (mean SCP = −5.7 ± 0.4 °C) whereas their mean fresh weight (99.858 ± 53.091 mg) and mean water content (665.83 ± 82.74%) increased. The eggs and larvae of O. eremita are freezing intolerant. Before overwintering, all larvae switch to being freezing tolerant and can survive ice formation in their tissues and body fluids, whereas their mean SCP stays at around −5 °C. However, recent experiments in the winter of 1996 have shown that frozen larva mortality does occur at temperatures lower than about −12 °C.  相似文献   

4.
为探讨蝴蝶兰(Phalaenopsis spp.)类原球茎(protocorm-like body,PLB)耐脱水性的主要影响因素,对PLB的平均粒重、含水率、脱水相对湿度、时间、温度、光周期与耐脱水性的关系进行了研究.结果表明,PLB的平均粒重与脱水后失水率、含水率、相对电导率、成活率呈显著或极显著相关.在较高湿度下...  相似文献   

5.
Corneal transplantation by full‐thickness penetrating keratoplasty with human donor tissue is a widely accepted treatment for damaged or diseased corneas. Although corneal transplantation has a high success rate, a shortage of high‐quality donor tissue is a considerable limitation. Therefore, bioengineered corneas could be an effective solution for this limitation, and a decellularized extracellular matrix comprises a promising scaffold for their fabrication. In this study, three‐dimensional bioprinted decellularized collagen sheets were implanted into the stromal layer of the cornea of five rabbits. We performed in vivo noninvasive monitoring of the rabbit corneas using swept‐source optical coherence tomography (OCT) after implanting the collagen sheets. Anterior segment OCT images and averaged amplitude‐scans were acquired biweekly to monitor corneal thickness after implantation for 1 month. The averaged cornea thickness in the control images was 430.3 ± 5.9 μm, while the averaged thickness after corneal implantation was 598.5 ± 11.8 μm and 564.5 ± 12.5 μm at 2 and 4 weeks, respectively. The corneal thickness reduction of 34 μm confirmed the biocompatibility through the image analysis of the depth‐intensity profile base. Moreover, hematoxylin and eosin staining supported the biocompatibility evaluation of the bioprinted decellularized collagen sheet implantation. Hence, the developed bioprinted decellularized collagen sheets could become an alternative solution to human corneal donor tissue, and the proposed image analysis procedure could be beneficial to confirm the success of the surgery.   相似文献   

6.
Efforts are being made to determine significant biophysical and physiological events related to postharvest needle abscission. It is known that initial postharvest average water consumption is 0.2 mL g?1 day?1 (based on dry shoot tissue), but gradually decreases by up to 75 %. It is hypothesized that some degree of water deficit is manifested through changes in several biophysical and hormonal factors. Parameters including needle loss, water use, relative water content, electrical capacitance, membrane injury, and xylem pressure potential were measured once every 5 days on balsam fir branches collected from a clonal orchard. In addition, needles were sampled at the beginning of the experiment and during peak needle abscission which were then subjected to endogenous hormonal analysis. Peak needle abscission occurred within 24 days. During this time water use decreased by 70 %, relative water content decreased by 23 %, capacitance decreased by 64 %, membrane injury increased by 100 %, needle break strength decreased by 50 %, and xylem pressure potential decreased fourfold. Abscisic acid increased by 32-fold and trans-zeatin riboside increased by fourfold during peak abscission compared to fresh branches. Other cytokinins, such as cis-zeatin riboside, isopentenyl adenosine, trans-zeatin-O-glucoside, and dihydrozeatin riboside all doubled during abscission. Finally, there was a 95 % decrease in indole-3-acetic acid. Observed changes in all biophysical parameters, as well as abscisic acid, could be indicative of a possible postharvest water stress or dehydration. It is possible that dehydration-induced changes in biophysical and hormonal factors trigger and/or modulate postharvest needle abscission.  相似文献   

7.
Summary The time until salamanders voluntarily abandoned foraging (the water time limit) and the amount of water lost when salamanders abandoned foraging (dehydration deficit) were determined for terrestrial plethodontid salamanders, Desmognathus ochrophaeus, foraging at various vapor pressure gradients in the laboratory. Salamander activity was correlated with the rate of water loss and was inversely related to the water time limit. Animals at 0.35–0.86 kPa vapor pressure gradients abandoned foraging and returned to moist retreats significantly sooner than animals in water-saturated air. The early retreat of animals in dry air was related in part to high rates of water loss and in part to the modest dehydration deficit (3.8%) at which animals abandoned foraging. Locomotor performance and foraging ability were unaffected by dehydration until dehydration deficits exceeded 12%. This suggests that salamanders in unsaturated air abandoned foraging at a low dehydration deficit to conserve and replenish water reserves rather than to avoid outright incapacitation or death. Present address: Department of Zoology, University of Guelph, Guelph, Ontario N1G 2W1, Canada  相似文献   

8.
This study compared the responses of Avicennia marina and Trichilia dregeana seeds, both of which are recalcitrant, to partial dehydration and storage. Seeds of A. marina exhibited a faster rate of water and viability loss (± 50% viability loss in 4 days) during partial dehydration, compared with T. dregeana (± 50% viability loss in 14 days). In A. marina embryonic axes, reactive oxygen species (ROS) production peaked on 4 days of dehydration and was accompanied by an increase in the GSH:GSSG ratio; it appears that the glutathione system alone could not overcome dehydration-induced oxidative stress in this species. In A. marina, ROS and axis water content levels increased during hydrated storage and were accompanied by a decline in the GSH:GSSG ratio and rapid viability loss. In T. dregeana embryonic axes, ROS production (particularly hydrogen peroxide) initially increased and thereafter decreased during both partial dehydration and hydrated storage. Unlike in A. marina embryonic axes, this reduced ROS production was accompanied by a decline in the GSH:GSSG ratio. While T. dregeana seeds may have incurred some oxidative stress during storage, a delay in and/or suppression of the ROS-based trigger for germination may account for their significantly longer storage longevity compared with A. marina. Mechanisms of desiccation-induced seed viability loss may differ across recalcitrant-seeded species based on the rate and extent to which they lose water during partial drying and storage. While recalcitrant seed desiccation sensitivity and, by implication, storage longevity are modulated by redox metabolism, the specific ROS and antioxidants that contribute to this control may differ across species.  相似文献   

9.
The photosynthetic rate of water stressed leaves of Primula palinuri was reduced drastically by stomatal closure, not by limitations imposed on the capacity of the photosynthetic apparatus, when water loss exceeded 20% of the water content of turgid leaves. The sudden decrease in phtosynthesis was not observed when the lower epidermis of the leaves had been removed. In these ‘stripped’ leaves, inhibition of photosynthesis increased only gradually during the wilting caused by increasing water stress and was complete when the relative water content was as low as 20% compared with the initial value. This corresponded to a water potential of about-40 bar. The light intensity at which half-maximum rates of photosynthesis were observed decreased as stress increased. In intact leaves photosynthesizing in the presence of CO2, light scattering, which is a measure of thylakoid energization, increased steeply during stomatal closure. The observed increase corresponded to the light scattering level measured in the absence of CO2. When the lower epidermis was removed, no sudden increase in thylakoid energization could be observed during dehydration. Thylakoid energization remained high even at low water potentials. It decreased drastically only below a relative water content of 20%. Irrespective, of the extent of water stress, CO2 fixation of stripped leaves increased when the oxygen content of air was reduced from 21% to 2%. Usually the transition from 21 to 2% O2 was accompanied by increased thylakoid energization. The increase in energization was more pronounced below than above a relative water content of 50%. The data show that energy-dissipating photorespiratory CO2 turnover in the in tercellular space of water-stressed leaves whose stomata are closed decreases only slowly as water stress increases. Respiratory CO2 production by leaves in the dark was even more resistant to water stress than photosynthesis. It was still significant at water potentials as low as-80 bar.  相似文献   

10.
An apparatus designed to simplify analytical procedures for determining fibre in food was used to measure fibre of similar composition to crude fibre, acid-detergent fibre and neutral-detergent fibre in 27 samples of sorghum grain. The metabolizable energy content of these grains for poultry was predicted from the three fibre methods with precision, respectively, of ± 0.49, ± 0.62 and ± 0.53 MJ/kg dry matter. These values corresponded to coefficients of variation of ± 3.0, ± 3.8 and ± 3.3%.The three fibre fractions were highly correlated with each other, and so a simple method that can measure a part of the total fibre is suitable for predicting the energy value of sorghum grain for poultry.  相似文献   

11.
To evaluate the efficacy and outcomes of tectonic epikeratoplasty with use of ethanol-preserved corneal grafts for the management of perforated corneal melts. The present retrospective case series includes 10 eyes which underwent tectonic epikeratoplasty for perforated corneal melts. The stromal remainders of Descemet membrane endothelial keratoplasty (DMEK) and Descemet stripping automated endothelial keratoplasty (DSAEK) graft preparation were stored in 95% ethanol and used as emergency tectonic grafts for restoring globe integrity after sterile and infectious perforated corneal melts. In 6 cases with subtotal corneal melt, DMEK remainders (endothelium-denuded corneoscleral buttons) were used for ‘limbus to limbus’ tectonic epikeratoplasty and in 4 cases DSAEK remainders (anterior stroma) were used to seal focal perforated melts. Graft storage time was 5.1?±?4.9 (ranging from 0.5 to 17) months. The surgeries were successful in all cases with restitution of the globe integrity. During the postoperative course 4 cases developed a graft melt (corneoscleral button for limbus to limbus tectonic epikeratoplasty, n?=?3; lamellar patch, n?=?1) within 2–6 months after the initial procedure. Three patients underwent successful repeat tectonic epikeratoplasty. In the fourth case of graft melt the globe was enucleated due to underlying expulsive haemorrhage and severe pain. The short-term results of the present case series suggest that the use of ethanol-stored stromal remainder of donor corneas after endothelial keratoplasty is an efficient temporary measure for tectonic restoration of perforated corneas.  相似文献   

12.
13.
The effects of cationic surfactants on the time-dependent increases in hydration of the corneal stroma were investigated to assess if the contribution of the proteoglycans could be titrated and how it might relate to the maximum and minimum swelling properties of the corneal stroma. From recent post-mortem eyes from adult sheep, square (8 x 8 mm) samples of corneal stroma were prepared and incubated in isotonic neutral pH mixed salts solution with added glucose, or pure water, at 37 degrees C. The time-dependent changes in wet mass were assessed over 24 h in the absence or presence of 0. 001-2% w/v cetylpyridium chloride (CPC) or benzalkonium chloride (BAC). The rate and magnitude of stromal swelling was reduced in a concentration-dependent fashion by the surfactants. In mixed salts solution, 100% inhibition of swelling could be achieved at 2% CPC and BAC. In pure water, the relative swelling was much more substantial and could only be attenuated by CPC.  相似文献   

14.
Myopia and keratoconus have become common corneal diseases that threaten the quality of human vision, and keratoconus is one of the most common indications for corneal transplantation worldwide. Collagen crosslinking (CXL) using riboflavin and ultraviolet A (UVA) light is an effective approach for treating ophthalmic disorders and has been shown clinically not only to arrest further progression of keratoconus but also to improve refractive power for cornea. However, CXL surgery irradiated by UVA has various potential risks such as surface damage and endothelial cell damage. Here, near-infrared femtosecond laser-based two-photon CXL was first applied to ex vivo human corneal stroma, operating at low photon energy with high precision and stability. After two-photon CXL, the corneal stiffness can be enhanced by 300% without significantly reducing corneal transparency. These findings illustrate the optimized direction that depositing high pulses energy in corneal focal volume (not exceeding damage threshold), and pave the way to 3D CXL of in vivo human cornea with higher safety, precision, and efficacy.  相似文献   

15.
目的:观察年龄相关性白内障行透明角膜切口超声乳化吸除及人工晶体植入术后角膜曲率的变化及相对稳定的时间。方法:收集2016年6月-8月在哈尔滨医科大学附属第一医院伍连德纪念医院进行的3.0 mm透明角膜切口白内障超声乳化吸除及人工晶体植入术的患者200例216眼,其中男88例、女128例,平均年龄71.2岁,进行相应的术前检查,并检查术前、术后第一天、一周、一个月、和三个月时的角膜曲率、视力、眼压并行相应的统计学分析。结果:术后不同时间点视力0.5的恢复情况:第一天为147眼(68.05%)、一周为175眼(81.02%)、一个月为193眼(89.35%)、三个月为197眼(91.20%);术前角膜曲率为43.94±1.35、术后第一天、术后一周的角膜曲率分别为44.98±1.06、44.45±1.18,与术前相比有显著性差异(p0.05),术后一个月、三个月的角膜曲率分别为44.13±1.27、44.02±1.24,与术前相比无显著性差异(p0.05);术源性散光于术后一天达到最大,随后逐渐减小,术后一个月、三个月与术后一天比较有显著性差异(p0.05),术后三个月与一个月比较无显著性差异(p0.05),术源性散光术后逐渐下降,并于一个月时趋于稳定。结论:3.0 mm透明角膜切口白内障超声乳化吸除及人工晶体植入术患者在术后一个月的角膜曲率基本稳定,恢复至术前状态,屈光状态趋于稳定,术源性角膜散光较小,术后视力恢复至较好状态。  相似文献   

16.

Objective

To demonstrate that an enhanced sediment microbial fuel cell (SMFC) system can accelerate the degradation of cellulose in fresh water sediments as the accumulation of cellulose in lake sediments may aggravate the lake marsh, increase organic matter content and result in rapid deterioration of water quality and damage the ecosystem.

Results

After 330 days the highest cellulose removal efficiency (72.7 ± 2.1 %) was achieved in the presence of a SMFC with a carbon nanotube decorated cathode, followed by a SMFC without the cathode decoration (64.4 ± 2.8 %). The lowest cellulose removal efficiency (47.9 ± 2.1 %) was in the absence of SMFC. The sediment characterization analysis confirmed that the carbon nanotube decorated cathode enhances the electron transfer rate in the SMFC and improves the dissolved organic matter oxidation rate.

Conclusion

This study offers a relatively simple and promising new method for cellulose degradation in sediment.
  相似文献   

17.
When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.Abbreviations ASM artificial stroma medium - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate-carboxylase/oxygenase - RWC relative water content  相似文献   

18.
Doughty MJ 《Tissue & cell》2000,32(6):478-493
AIM: The mammalian corneal stroma, like some other connective tissues, can absorb fluid, swell and become oedematous. Since studies on the corneal stroma have been carried out with different types of preparations and solutions, inter-study comparisons are very difficult. A study was thus undertaken on a standardised preparation to assess the relative magnitude of this swelling and its relationship to thickness of the preparations. METHODS: From selected recent post-mortem eyes of adult cattle, stroma preparations were cut from the central part of the cornea. These preparations were immersed in various solutions of known pH and osmolality, and the time-dependent changes in wet mass were assessed over 9 h at 37 degrees C. The relative rates and magnitude of the swelling of the tissue were then compared. RESULTS: A reference value for stromal swelling was obtained by incubation in a 35 mM bicarbonate-buffered mixed salts solution equilibrated with 5% CO2-air (pH 7.60) where a 3.39-fold increase in wet mass and a 4.58-fold increase in thickness was realised in 9 h, at an initial rate of 76 +/- 3%/h. The swelling was essentially the same in an organic buffer-mixed salt solution (pH 7.5) but progressively greater in phosphate-buffered saline (pH 7.5), a range of phosphate buffers (10-67 mM, pH 7.5), NaCl solutions (0.025-1%) and with gross swelling observed in water (where a 15.9-fold increase in wet mass occurred along with a 25-fold increase in thickness, at an initial rate of 643 +/- 62%/h). Overall, the wet mass changes were strongly related to thickness (P < 0.001). CONCLUSIONS: The results confirm that the selection of solution(s) for studies on corneal stromal swelling is critical. The swelling (oedema) is lower in a physiologically-relevant solution (similar to the aqueous humour of the eye). This indicates that the swelling tendency of the corneal stroma has been overestimated in the past, and that a similar discrepancy may also exist for studies on other connective tissues ex vivo when non-physiological experimental solutions are used.  相似文献   

19.
20.
The present studies were designed to explore the relationship between the swelling-related changes of the collagen-cell (keratocyte) matrix of the corneal stroma, and the integrity of the cells. From recent postmortem eyes of adult cattle, complete stroma preparations were dissected out and allowed to swell in solution (free swelling) or enclosed within a 12 kDa cut-off dialysis membrane with or without spacers. The swelling was at 4 degrees C with either water, a hypotonic phosphate-buffered saline (PBS, pH 7.0), a hypotonic mixed salt (MS) solution (pH 7.5), or an isotonic mixed salt solution with glucose (pH 7.5). Measures of tissue wet mass and thickness and analyses of the soluble protein, LDH and ALDH activity in the solutions were made. The relative swelling of the stroma preparations was greatest in water (to 624% of the original wet mass) > dilute PBS (to 404%) > dilute MS (to 381%) > MS with glucose (to 356%). The relative swelling was in the same order, but slightly less if the stroma preparations were enclosed in a dialysis tube with spacers, and substantially reduced when enclosed in a dialysis bag without spacers. With the use of hypotonic solutions, substantial quantities of proteinaceous material and enzyme activity were lost from the preparations, with the loss being proportional to the extent of swelling (p < 0.001). Swelling of an isolated corneal stroma, especially in hypotonic solutions, is associated with substantial loss of soluble protein and cytoplasmic enzyme activities, and so these solutions must be considered as cytotoxic to the keratocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号