首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
We have earlier reported that following persistent stimulation with hCG, oxidative stress‐induced apoptosis in rat Leydig cells was mainly achieved through the extrinsic pathway. In the present study, the role of N‐acetylcysteine (NAC) in counteracting the oxidative stress and the mechanisms of inhibition of apoptosis under such conditions were investigated. NAC (1 mM) intervention with repeated hCG stimulation (50 ng/ml, four times, each with 30 min challenge) prevented the decline in Leydig cell viability and the rise in lipid peroxidation and reactive oxygen species. Simultaneously, the activities of the enzymes glutathione‐S‐transferase, catalase, superoxide dismutase and the intracellular glutathione and antioxidant capacity of the treated cells improved significantly. Apoptotic markers Fas, FasL, and caspase‐8, up‐regulated following repeated hCG exposure, were significantly down‐regulated following NAC co‐incubation. While Bcl‐2 expression was fully restored, Bax and caspase‐9 remained unchanged. NAC treatment induced down‐regulation of upstream JNK/pJNK and down‐stream caspase‐3 in the target cells. Taken together, the above findings indicate that NAC counteracted the oxidative stress in Leydig cells induced as a result of repeated hCG stimulation, and inhibited apoptosis by mainly regulating the extrinsic and JNK pathways of metazoan apoptosis. Mol. Reprod. Dev. 77:900–909, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low‐intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague–Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham‐control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8‐hydroxydeoxyguanosine (8‐OHdG), and total oxidant‐antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low‐intensity MWR caused a significant increase in MDA, 8‐OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole‐body exposure to 1800 and 2100 MHz low‐intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant‐antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76–85. © 2020 Bioelectromagnetics Society  相似文献   

3.
Ischemia/reperfusion (I/R) injury represents an important cause of bladder contractile dysfunction. One of the major causes leading to this dysfunction is thought to be reactive oxygen species formation. In this study, we investigated the potential benefit of N‐acetylcysteine (NAC), a potent antioxidant that neutralizes free radicals, in a rat model of urinary bladder injury. NAC treatment rescues the reduction of contractile response to I/R injury in a dose‐dependent manner. In addition, all levels of reactive oxygen species, lipid peroxidation, and NADPH‐stimulated superoxide production in the I/R operation + NAC (I/R + NAC) group also decreased compared with a marked increase in the I/R operation + saline (I/R + S) group. Moreover, an in situ fluorohistological approach also showed that NAC reduces the generation of intracellular superoxides enlarged by I/R injury. Together, our findings suggest that NAC has a protective effect against the I/R‐induced bladder contractile dysfunction via radical scavenging property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A number of scientific studies have revealed that Lactobacillus strains have beneficial bioactivities in the gastrointestinal tract. In this study, the production of intracellular reactive oxygen species (ROS) and the amounts of intracellular calcium, protein kinase C activity, cytochrome c, Bid, Bcl‐2, Bax and the apoptosis‐mediated proteins [caspase‐8, caspase‐3 and poly ADP ribose polymerase (PARP)] were evaluated to understand the induction of programmed cell death in HT‐29 cells by Lactobacillus plantarum L67. The results obtained from this study indicated that the relative intensities of the apoptotic‐related factors (intracellular ROS and intracellular calcium) and of apoptotic signals (Bax and t‐Bid) increased with increasing concentrations of the membrane proteins isolated from heat‐killed L. plantarum L67, whereas the relative intensities of cytochrome c, Bcl‐2, caspase‐8, caspase‐3 and PARP decreased. This study determines whether proteins (12 and 15 kDa) isolated from heat‐killed L. plantarum L67 induce programmed cell death in HT‐29 cells. Proteins isolated from L. plantarum L67 can stimulate the apoptotic signals and then consequently induce programmed cell death in HT‐29 cells. The results in this study suggest that the proteins isolated from L. plantarum L67 could be used as an antitumoural agent in probiotics and as a component of supplements or health foods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N‐acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S‐nitrosoglutathione) previously has been shown to be able to promote Cl? efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl? efflux from CF and non‐CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37°C. The effect of NAC on Cl? transport was measured by Cl? efflux measurements and by X‐ray microanalysis. Cl? efflux from CFBE cells was stimulated by NAC in a dose‐dependent manner, with 10 mM NAC causing a significant increase in Cl? efflux with nearly 80% in CFBE cells. The intracellular Cl? concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl? efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients.  相似文献   

6.
Acute or chronic damage to the liver may occur through alcohol, drugs, viruses, genetic disorders, and toxicity. In this study, we planned to investigate the protective and therapeutic effects of melatonin (Mel) by causing damage to the liver with thioacetamide (TAA). Thirty‐five rats were used. Group I: control group (seven pieces), group II: Mel group (seven pieces) the single dose on the first day of the experiment was 10 mg/kg, group III: TAA (seven pieces) 300 mg/kg with 24‐hour intervals, two doses, group IV: Mel + TAA group (seven pieces) 10 mg/kg single dose Mel was applied 24 hours before TAA application, group V: TAA + Mel group (seven pieces) single dose (24th hour) of 10 mg/kg Mel was administered after TAA (300 mg/kg) two doses. The liver histology was evaluated. Apoptosis, autophagy, and necrosis markers in tissue were determined by immunohistochemistry. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in blood serum samples and transforming growth factor‐β (TGF‐β) and tumor necrosis factor‐α (TNF‐α) levels were determined in liver tissue. TAA affected histologically the classical lobule structure both in cell cords and sinusoids. Caspase‐3, RIP3, and LC3 levels were increased in group III compared with the control group. TAA did not cause a statistically significant change in TNF‐α level but decreased the TGF‐β level significantly. AST and ALT levels were statistically significant in group II and V compared with group I, the ALP level was significant in group IV compared with group II. The results of this study showed that TAA caused significant damage to tissues and increased cell death, Mel was found to have more therapeutic than the protective effect on tissues.  相似文献   

7.
8.
The clinical application of stem cells offers great promise as a potential avenue for therapeutic use in neurodegenerative diseases. However, cell loss after transplantation remains a major challenge, which currently plagues the field. On the basis of our previous findings that fibroblast growth factor 21 (FGF‐21) protected neurons from glutamate excitotoxicity and that upregulation of FGF‐21 in a rat model of ischemic stroke was associated with neuroprotection, we proposed that overexpression of FGF‐21 protects bone marrow‐derived mesenchymal stem cells (MSCs) from apoptosis. To test this hypothesis, we examined whether the detrimental effects of apoptosis can be mitigated by the transgenic overexpression of FGF‐21 in MSCs. FGF‐21 was transduced into MSCs by lentivirus and its overexpression was confirmed by quantitative polymerase chain reaction. Moreover, FGF‐21 overexpression did not stimulate the expression of other FGF family members, suggesting it does not activate a positive feedback system. The effects of hydrogen peroxide (H2O2), tumor necrosis factor‐α (TNF‐α), and staurosporine, known inducers of apoptosis, were evaluated in FGF‐21 overexpressing MSCs and mCherry control MSCs. Caspases 3 and 7 activity was markedly and dose‐dependently increased by all three stimuli in mCherry MSCs. FGF‐21 overexpression robustly suppressed caspase activation induced by H2O2 and TNF‐α, but not staurosporine. Moreover, the assessment of apoptotic morphological changes confirmed the protective effects of FGF‐21 overexpression. Taken together, these results provide compelling evidence that FGF‐21 plays a crucial role in protecting MSCs from apoptosis induced by oxidative stress and inflammation and merits further investigation as a strategy for enhancing the therapeutic efficacy of stem cell‐based therapies.  相似文献   

9.
The most potent of the dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a persistent and ubiquitous environmental contaminant. And the health impact of exposure to TCDD is of great concern to the general public. Recent data indicate that l-glutamine (Gln) has antioxidant properties and may influence hepatotoxicity. The objective of the present study was undertaken to explore the effectiveness of Gln in alleviating the hepatotoxicity of TCDD on primary cultured rat hepatocytes. Gln (0.5, 1 and 2 mM) was added to cultures alone or simultaneously with TCDD (0.005 and 0.01 mM). The hepatocytes were treated with TCDD and Gln for 48 h. Then cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC), total glutathione (TGSH) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by liver micronucleus assay (MN) and 8-oxo-2-deoxyguanosine (8-OH-dG). The results of MTT and LDH assays showed that TCDD decreased cell viability but not l-glutamine. TCDD also increased TOS level in rat hepatocytes and significantly decreased TAC and TGSH levels. On the basis of increasing doses, the dioxin in a dose-dependent manner caused significant increases of micronucleated hepatocytes (MNHEPs) and 8-OH-dG as compared to control culture. Whereas, in cultures exposured with Gln alone, TOS levels were not changed and TAC and TGSH together were significantly increased in dose-dependent fashion. The presence of Gln with TCDD modulated the hepatotoxic effects of TCDD on primary hepatocytes cultures. Noteworthy, Gln has a protective effect against TCDD-mediated DNA damages. As conclusion, we reported here an increased potential therapeutic significance of l-glutamine in TCDD-mediated hepatic injury for the first time.  相似文献   

10.
11.
Hypercholesterolemia is a major risk factor for atherosclerosis and related occlusive vascular diseases. We investigated the effect of low‐dose fluvastatin (2 mg kg?1 day?1) on antioxidant enzyme activities [superoxide dismutase (SOD), catalase], vascular reactivity changes and oxidatively induced DNA damage in early stage of atherosclerosis in hypercholesterolemic rabbits. The animals were divided into three groups each composed of 10 rabbits. The control group received a regular rabbit chow diet, and the cholesterol group had hypercholesterolemic diet (2%, 4 weeks). The fluvastatin group was given hypercholesterolemic diet plus fluvastatin. Dietary intake of cholesterol significantly increased total cholesterol levels in rabbits (control, 0.85 ± 0.29; cholesterol, 12.04 ± 4.61; fluvastatin, 8.07 ± 2.72 mmol l?1 ). Hypercholesterolemic diet revealed discernible fatty streaks in arcus aortae. Fluvastatin significantly reduced the areas of the lesions. The diet significantly increased SOD activities in both erythrocyte and tissue. Treatment with fluvastatin normalized the increased activity of SOD in both erythrocyte and aortic tissues from the cholesterol group. Cholesterol feeding decreased the sensitivity to acetylcholine, and treatment with fluvastatin significantly restored the diminished sensitivity to acetylcholine in thoracic aortae. Cholesterol feeding caused oxidatively induced DNA damage in liver tissues determined by the increased levels of 8‐hydroxyguanine (8‐OH‐Gua) and 2,6‐diamino‐4‐hydroxy‐5‐formamidopyrimidine (FapyGua). Fluvastatin decreased only FapyGua level in liver. In conclusion, our results may suggest that fluvastatin seems to play a protective role on high cholesterol‐induced oxidative stress and DNA damage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin‐induced human embryonic kidney 293 (HEK‐293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose‐dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase‐3,‐9, and decreased protein levels of Bcl‐2, Bcl‐XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF‐κB‐mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin‐induced nephrotoxicity.  相似文献   

13.
14.
Reactive oxygen species (ROS), encompassing all oxygen radical or non‐radical oxidizing agents, play key roles in disease progression. Controlled delivery of antioxidants is therapeutically relevant in such oxidant‐stressed environments. Encapsulating small hydrophilic molecules into hydrophobic polymer microparticles via traditional emulsion methods has long been a challenge due to rapid mass transport of small molecules out of particle pores. We have developed a simple alteration to the existing water‐in‐oil‐in‐water (W/O/W) drug encapsulation method that dramatically improves loading efficiency: doping external water phases with drug to mitigate drug diffusion out of the particle during fabrication. PLGA microparticles with diameters ranging from 0.6 to 0.9 micrometers were fabricated, encapsulating high loads of 0.6–0.9 µm diameter PLGA microparticles were fabricated, encapsulating high loads of the antioxidant N‐acetylcysteine (NAC), and released active, ROS‐scavenging NAC for up to 5 weeks. Encapsulation efficiencies, normalized to the theoretical load of traditional encapsulation without doping, ranged from 96% to 400%, indicating that NAC‐loaded external water phases not only prevented drug loss due to diffusion, but also doped the particles with additional drug. Antioxidant‐doped particles positively affected the metabolism of oligodendrocyte progenitor cells (OPCs) under H2O2‐mediated oxidative stress when administered both before (protection) or after (rescue) injury. Antioxidant doped particles improved outcomes of OPCs experiencing multiple doses of H2O2 by increasing the intracellular glutathione content and preserving cellular viability relative to the injury control. Furthermore, antioxidant‐doped particles preserve cell number, number of process extensions, cytoskeletal morphology, and nuclear size of H2O2‐stressed OPCs relative to the injury control. These NAC‐doped particles have the potential to provide temporally‐controlled antioxidant therapy in neurodegenerative disorders such as multiple sclerosis (MS) that are characterized by continuous oxidative stress.  相似文献   

15.
Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N‐acetylcysteine (NAC), a well‐known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to investigate the effect of desferrioxamine on peroxynitrite-mediated damage in erythrocytes by measuring the 3-nitrotyrosine level and glutathione peroxidase and Na(+)-K(+) ATPase activities in vitro. 3-Nitrotyrosine levels were determined by HPLC; glutathione peroxidase and Na(+)-K(+) ATPase activities were measured by spectrophotometry. Peroxynitrite increased the 3-nitrotyrosine level but decreased both enzyme activities. In the presence of desferrioxamine, glutathione peroxidase activity was increased with a decrease in the 3-nitrotyrosine level. Desferrioxamine was found to possess an important antioxidant activity as assessed in an in vitro system, reducing protein nitration, restoring enzyme activities and maintaining erythrocyte membrane integrity.  相似文献   

17.
Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)‐positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain‐derived neurotrophic factor (BDNF). Because glial cell line‐derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120‐treated rats. In these animals, a significant increase in the number of caspase‐3‐ positive neurons, both tyrosine hydroxylase (TH)‐positive and ‐negative, was observed. Analysis of TH immunoreactivity revealed fewer TH‐positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

18.
目的:探讨冷应激对雏鸡肺脏DNA氧化损伤的影响。方法:以健康15日龄雏鸡为试验对象,进行冷应激(12±1℃)处理。检测了肺脏MDA含量以及SOD和GSH-Px活性,并应用KCl-SDS沉淀法和荧光检测法检测肺细胞DNA-蛋白质交联(DPC)系数和DNA-DNA交联(DDC)系数。结果:冷应激时,肺脏MDA含量随应激时间的延长逐渐升高,SOD、GSH-Px活性随应激时间的延长呈现上升趋势,肺细胞DPC和DDC含量也均随应激时间的延长呈升高趋势。结论:揭示冷应激可使肺组织氧化-抗氧化平衡破坏,引起肺组织细胞DNA的氧化损伤。  相似文献   

19.
20.
Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号