首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The alpha/beta‐hydrolases are a family of acid‐base‐nucleophile catalytic triad enzymes with a common fold, but using a wide variety of substrates, having different pH optima, catalyzing unique catalytic reactions and often showing improved chemical and thermo stability. The ABH enzymes are prime targets for protein engineering. Here, we have classified active sites from 51 representative members of 40 structural ABH fold families into eight distinct conserved geometries. We demonstrate the occurrence of a common structural motif, the catalytic acid zone, at the catalytic triad acid turn. We show that binding of an external ligand does not change the structure of the catalytic acid zone and both the ligand‐free and ligand‐bound forms of the protein belong to the same catalytic acid zone subgroup. We also show that the catalytic acid zone coordinates the position of the catalytic histidine loop directly above its plane, and consequently, fixes the catalytic histidine in a proper position near the catalytic acid. Finally, we demonstrate that the catalytic acid zone plays a key role in multi‐subunit complex formation in ABH enzymes, and is involved in interactions with other proteins. As a result, we speculate that each of the catalytic triad residues has its own supporting structural scaffold, similar to the catalytic acid zone, described above, which together form the extended catalytic triad motif. Each scaffold coordinates the function of its respective catalytic residue, and can even compensate for the loss of protein function, if the catalytic amino acid is mutated.  相似文献   

2.
Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three‐dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/β‐hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the “CS‐D‐HC motif,” is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site. Proteins 2014; 82:2857–2867. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The protein Smu.1393c from Streptococcus mutans is annotated as a putative α/β hydrolase, but it has low sequence identity to the structure‐known α/β hydrolases. Here we present the crystal structure of Smu.1393c at 2.0 Å resolution. Smu.1393c has a fully open alkaline substrate pocket, whose conformation is unique among other similar hydrolase structures. Three residues, Ser101, His251, and Glu125, were identified as the active center of Smu.1393c. By screening a series of artificial hydrolase substrates, we demonstrated Smu.1393c had low carboxylesterase activity towards short‐chain carboxyl esters, which provided a clue for exploring the in vivo function of Smu.1393c. Proteins 2014; 82:695–700. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
5.
Recent studies have demonstrated that scorpion venom contains unique two-domain peptides with the peculiarity of possessing different functions, i.e. neurotoxic and cytolytic activities. Here we report systematic characterization of a new two-domain peptide (named MeuTXKβ1) belonging to the TsTXKβ molecular subfamily from the scorpion Mesobuthus eupeus by molecular cloning, biochemical purification, recombinant expression, functional assays, CD and NMR studies. Its full-length bioactive form as well as 1–21 and 22–72 fragments (named N(1–21) and C(22–72), respectively) was produced in Escherichia coli by an on-column refolding approach. Recombinant peptide (rMeuTXKβ1) exhibited a low affinity for K+ channels and cytolytic effects against bacteria and several eukaryotic cells. N(1–21) was found to preserve anti-Plasmodium activity in contrast to haemolytic activity, whereas C(22–72) retains these two activities. Circular dichroism analysis demonstrates that rMeuTXKβ1 presents a typical scorpion toxin scaffold in water and its α-helical content largely increases in a membrane-mimicking environment, consistent with the NMR structure of N(1–21) and an ab initio structure model of MeuTXKβ1 predicted using I-TASSER algorithm. Our structural and functional data clearly indicate an evolutionary link between TsTXKβ-related peptides and antiparasitic scorpines which both comprise the βSPN (β-KTxs and scorpines) family.  相似文献   

6.
Abeln S  Deane CM 《Proteins》2005,60(4):690-700
We review fold usage on completed genomes to explore protein structure evolution. The patterns of presence or absence of folds on genomes gives us insights into the relationships between folds, the age of different folds and how we have arrived at the set of folds we see today. We examine the relationships between different measures which describe protein fold usage, such as the number of copies of a fold per genome, the number of families per fold, and the number of genomes a fold occurs on. We obtained these measures of fold usage by searching for the structural domains on 157 completed genome sequences from all three kingdoms of life. In our comparisons of these measures we found that bacteria have relatively more distinct folds on their genomes than archaea. Eukaryotes were found to have many more copies of a fold on their genomes. If we separate out the different fold classes, the alpha/beta class has relatively fewer distinct folds on large genomes, more copies of a fold on bacteria and more folds occurring in all three kingdoms simultaneously. These results possibly indicate that most alpha/beta folds originated earlier than other folds. The expected power law distribution is observed for copies of a fold per genome and we found a similar distribution for the number of families per fold. However, a more complicated distribution appears for fold occurrence across genomes, which strongly depends on fold class and kingdom. We also show that there is not a clear relationship between the three measures of fold usage. A fold which occurs on many genomes does not necessarily have many copies on each genome. Similarly, folds with many copies do not necessarily have many families or vice versa.  相似文献   

7.
The crystal structure of the product of the Bacillus subtilis ykuD gene was solved by the multiwavelength anomalous dispersion (MAD) method and refined using data to 2.0 A resolution. The ykuD protein is a representative of a distinctly prokaryotic and ubiquitous family found among both pathogenic and nonpathogenic Gram-positive and Gram-negative bacteria. The deduced amino acid sequence reveals the presence of an N-terminal LysM domain, which occurs among enzymes involved in cell wall metabolism, and a novel, putative catalytic domain with a highly conserved His/Cys-containing motif of hitherto unknown structure. As the wild-type protein did not crystallize, a double mutant was designed (Lys117Ala/Gln118Ala) to reduce excess surface conformational entropy. As expected, the structure of the LysM domain is similar to the NMR structure reported for an analogous domain from Escherichia coli murein transglycosylase MltD. The molecular model also shows that the 112-residue-long C-terminal domain has a novel tertiary fold consisting of a beta-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two beta-sheets form a cradle capped by an alpha-helix. This domain contains a putative catalytic site with a tetrad of invariant His123, Gly124, Cys139, and Arg141. The stereochemistry of this active site shows similarities to peptidotransferases and sortases, and suggests that the enzymes of the ykuD family may play an important role in cell wall biology.  相似文献   

8.
Germination protease (GPR) plays an important role in the germination of spores of Bacillus and Clostridium species. A few very similar GPRs form a singleton group without significant sequence similarities to any other proteins. Their active site locations and catalytic mechanisms are unclear, despite the recent 3-D structure determination of Bacillus megaterium GPR. Using structural comparison and sequence analysis, we show that GPR is homologous to bacterial hydrogenase maturation protease (HybD). HybD's activity relies on the recognition and binding of metal ions in Ni-Fe hydrogenase, its substrate. Two highly conserved motifs are shared among GPRs, hydrogenase maturation proteases, and another group of hypothetical proteins. Conservation of two acidic residues in all these homologs indicates that metal binding is important for their function. Our analysis helps localize the active site of GPRs and provides insight into the catalytic mechanisms of a superfamily of putative metal-regulated proteases.  相似文献   

9.
Calicivirus proteases cleave the viral precursor polyprotein encoded by open reading frame 1 (ORF1) into multiple intermediate and mature proteins. These proteases have conserved histidine (His), glutamic acid (Glu) or aspartic acid (Asp), and cysteine (Cys) residues that are thought to act as a catalytic triad (i.e. general base, acid and nucleophile, respectively). However, is the triad critical for processing the polyprotein? In the present study, we examined these amino acids in viruses representing the four major genera of Caliciviridae: Norwalk virus (NoV), Rabbit hemorrhagic disease virus (RHDV), Sapporo virus (SaV) and Feline calicivirus (FCV). Using single amino‐acid substitutions, we found that an acidic amino acid (Glu or Asp), as well as the His and Cys in the putative catalytic triad, cannot be replaced by Ala for normal processing activity of the ORF1 polyprotein in vitro. Similarly, normal activity is not retained if the nucleophile Cys is replaced with Ser. These results showed the calicivirus protease is a Cys protease and the catalytic triad formation is important for protease activity. Our study is the first to directly compare the proteases of the four representative calicivirus genera. Interestingly, we found that RHDV and SaV proteases critically need the acidic residues during catalysis, whereas proteolytic cleavage occurs normally at several cleavage sites in the ORF1 polyprotein without a functional acid residue in the NoV and FCV proteases. Thus, the substrate recognition mechanism may be different between the SaV and RHDV proteases and the NoV and FCV proteases.  相似文献   

10.
Published X‐ray crystallographic structures for glycoside hydrolases (GHs) from 39 different families are surveyed according to some rigorous selection criteria, and the distances separating 208 pairs of catalytic carboxyl groups (20 α‐retaining, 87 β‐retaining, 38 α‐inverting, and 63 β‐inverting) are analyzed. First, the average of all four inter‐carboxyl OO distances for each pair is determined; second, the mean of all the pair‐averages within each GH family is determined; third, means are determined for groups of GH families. No significant differences are found for free structures compared with those complexed with a ligand in the active site of the enzyme, nor for α‐GHs as compared with β‐GHs. The mean and standard deviation (1σ) of the unimodal distribution of average OO distances for all families of inverting GHs is 8 ± 2Å, with a very wide range from 5Å (GH82) to nearly 13Å (GH46). The distribution of average OO distances for all families of retaining GHs appears to be bimodal: the means and standard deviations of the two groups are 4.8 ± 0.3Å and 6.4 ± 0.6Å. These average values are more representative, and more likely to be meaningful, than the often‐quoted literature values, which are based on a very small sample of structures. The newly‐updated average values proposed here may alter perceptions about what separations between catalytic residues are “normal” or “abnormal” for GHs. Proteins 2014; 82:1747–1755. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Alpha 1,3-fucosyltransferases (FucT) share a conserved amino acid sequence designated the alpha 1,3 FucT motif that has been proposed to be important for nucleotide sugar binding. To evaluate the importance of the amino acids in this motif, each of the alpha 1,3 FucT motif amino acids was replaced with alanine (alanine scanning mutagenesis) in human FucT VI, and the resulting mutant proteins were analyzed for enzyme activity and kinetically characterized in those cases in which the mutant protein had sufficient activity. Two of the mutant proteins were inactive, six had less than 1% of wild-type activity, and four had approximately 10-50% of wild-type enzyme activity. Three of the mutant proteins with significant enzyme activity had substantially larger Km (5 to 15 times) for GDP-fucose than FucT VI wild-type enzyme. The fourth mutant protein with significant enzyme activity (S249A) had a Km at least 10 times larger than wild-type FucT VI for the acceptor substrate, with only a slightly larger (2-3 times) Km for GDP-fucose. Thus mutation of any of the amino acids within the alpha 1,3 FucT motif to Ala affects alpha 1,3-FucT activity, and substitution of Ala for some of the alpha 1,3 FucT motif amino acids results in proteins with altered kinetic constants for both the acceptor and donor substrates. Secondary structure prediction suggests a helix-loop-helix fold for the alpha 1,3 FucT motif, which can be used to rationalize the effects of mutations in terms of 3D structure.  相似文献   

12.
RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.  相似文献   

13.
A monoclonal antibody (mAb), i41SL1-2, was obtained by immunizing the peptide of complementarity-determining region-1 (CDRL-1: RSSKSLLYSNGNTYLY) of a super catalytic antibody light chain, 41S-2-L, capable of enzymatically destroying the gp41 molecule of the HIV-1 envelope. From the DNA and the deduced amino acid sequences of the light and heavy chain of i41SL1-2 mAb, molecular modeling was conducted that suggested that both subunits of i41SL1-2 mAb possess catalytic triads in their structures. Especially the light chain of i41SL1-2 mAb possesses a characteristic catalytic triad composed of Asp(1), Ser(27A), and His(93), whose positions are identical to the catalytic antibody light chain, VIPase, of S. Paul and colleagues (see text). The antibody gene of i41SL1-2 light chain and VIPase belong to the same germline, bd2, suggesting that the discrete germline inherently possesses catalytic activity. Both light and heavy chains of i41SL1-2 mAb degraded the antigenic peptide CDRL-1 within 47 and 57 h, respectively. The catalytic reaction constant (kcat) of the light and heavy chain was 6.1 x 10(-1) and 6.2 x 10(-1) min(-1), respectively. These are high values for the natural catalytic antibodies reported so far. The catalytic efficiency (kcat/Km) of the light and heavy chain was 3.1 x 10(5) and 4.9 x 10(4) M(-1) min(-1), respectively. The first cleaved bond of the antigenic peptide by subunits of i41SL1-2 mAb was between Arg(1) and Ser(2) in the sequence of CDRL-1, suggesting a serine protease character.  相似文献   

14.
Recent studies have shown that a number of glycoside hydrolase families do not follow the classical catalytic mechanisms, as they lack a typical catalytic base/nucleophile. A variety of mechanisms are used to replace this function, including substrate‐assisted catalysis, a network of several residues, and the use of non‐carboxylate residues or exogenous nucleophiles. Removal of the catalytic base/nucleophile by mutation can have a profound impact on substrate specificity, producing enzymes with completely new functions. Biotechnol. Bioeng. 2010;107: 195–205. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Gupta M  Chauhan VS 《Biopolymers》2011,95(3):161-173
The de novo design of peptides and proteins has emerged as an approach for investigating protein structure and function. The success relies heavily on the ability to design relatively short peptides that can adopt stable secondary structures. To this end, substitution with α,β-dehydroamino acids, especially α,β-didehydrophenylalanine (ΔPhe or ΔF) has blossomed in manifold directions, providing a rich diversity of well-defined structural motifs. Introduction of α,β-didehydrophenylalanine induces β-bends in small and 3(10)-helices in longer peptide sequences. Most favorable conformation of ΔF residues are (φ,ψ) ~(60°, 30°), (-60°, -30°), (-60°, 150°), and (60°, -150°). These features have been exploited in designing helix-turn-helix, helical bundle arrangements, and glycine zipper type super secondary structural motifs. The unusual capability of α,β-didehydrophenylalanine ring to form a variety of multicentered interactions (N-H…O, C-H…O, C-H…π, and N-H…π) suggests its possible exploitation for future de novo design of supramolecular structures. This work has now been extended to the de novo design of peptides with antibiotic, antifibrillization activity, etc. More recently, self-assembling properties of small dehydropeptides have been explored. This review focuses primarily on the structural and functional behavior of α,β-didehydrophenylalanine containing peptides.  相似文献   

16.
Cyclophosphamide (CP) has potential urotoxicity such as hemorrhagic cystitis (HC). 2-Mercaptoethane sulfonate (mesna) has been widely used as an effective agent against CP-induced cystitis, but significant HC has still been encountered clinically. In recent studies, mesna was shown to be more effective if combined with antioxidants. The purpose of this study was to evaluate the effects of antioxidants, alpha-tocopherol, beta-carotene and melatonin on CP-induced bladder damage in rats, even if used without mesna administration. Male Sprague-Dawley rats weighing 180-210 g were divided into 5 groups. Four groups received a single dose of CP (100 mg/kg) intraperitoneally with the same time intervals. Group 2 received CP only, group 3 received beta-carotene (40 mg/kg/day), group 4 received alpha-tocopherol (40 mg/kg/day) and group 5 received melatonin (10 mg/kg/day) both before and the day after CP injection. Group 1 served as control. Bladder histopathology, as well as malondialdehyde (MDA) and iNOS levels, and excretion of nitrite-nitrates (NO(x)) in urine were evaluated. CP injection resulted in severe histological changes and macroscopic hematuria. alpha-Tocopherol and melatonin showed meaningful protection against bladder damage. Protection by beta-carotene was also significant but weaker. MDA levels increased significantly with CP injection and all antioxidants ameliorated this increase in bladder tissue. CP also elevated the NO(x) level in urine and iNOS activity in bladder. Only melatonin was able to decrease these parameters. In conclusion, there is no doubt that oxidants have a role in the pathogenesis of CP-cystitis. Antioxidants, especially melatonin and alpha-tocopherol, may help to ameliorate bladder damage induced by CP.  相似文献   

17.
Lu CH  Lin YS  Chen YC  Yu CS  Chang SY  Hwang JK 《Proteins》2006,63(3):636-643
To identify functional structural motifs from protein structures of unknown function becomes increasingly important in recent years due to the progress of the structural genomics initiatives. Although certain structural patterns such as the Asp-His-Ser catalytic triad are easy to detect because of their conserved residues and stringently constrained geometry, it is usually more challenging to detect a general structural motifs like, for example, the betabetaalpha-metal binding motif, which has a much more variable conformation and sequence. At present, the identification of these motifs usually relies on manual procedures based on different structure and sequence analysis tools. In this study, we develop a structural alignment algorithm combining both structural and sequence information to identify the local structure motifs. We applied our method to the following examples: the betabetaalpha-metal binding motif and the treble clef motif. The betabetaalpha-metal binding motif plays an important role in nonspecific DNA interactions and cleavage in host defense and apoptosis. The treble clef motif is a zinc-binding motif adaptable to diverse functions such as the binding of nucleic acid and hydrolysis of phosphodiester bonds. Our results are encouraging, indicating that we can effectively identify these structural motifs in an automatic fashion. Our method may provide a useful means for automatic functional annotation through detecting structural motifs associated with particular functions.  相似文献   

18.
19.
YdhR is a 101-residue conserved protein from Escherichia coli. Sequence searches reveal that the protein has >50% identity to proteins found in a variety of other bacterial genomes. Using size exclusion chromatography and fluorescence spectroscopy, we determined that ydhR exists in a dimeric state with a dissociation constant of approximately 40 nM. The three-dimensional structure of dimeric ydhR was determined using NMR spectroscopy. A total of 3400 unambiguous NOEs, both manually and automatically assigned, were used for the structure calculation that was refined using an explicit hydration shell. A family of 20 structures was obtained with a backbone RMSD of 0.48 A for elements of secondary structure. The structure reveals a dimeric alpha,beta fold characteristic of the alpha+beta barrel superfamily of proteins. Bioinformatic approaches were used to show that ydhR likely belongs to a recently identified group of mono-oxygenase proteins that includes ActVA-Orf6 and YgiN and are involved in the oxygenation of polyaromatic ring compounds.  相似文献   

20.
Carvedilol is currently used as the racemic mixture, (R,S)-carvedilol, consisting of equal amounts of (R)-carvedilol, an alpha-blocker, and (S)-carvedilol, an alpha- and beta-blocker, which have never been tested in their optically pure forms in human subjects. We performed a randomized, double-blind, placebo-controlled, crossover study in 12 healthy male volunteers. Subjects received single oral doses of 25 mg (R,S)-carvedilol, 12.5 mg (R)-carvedilol, 12.5 mg (S)-carvedilol, and placebo at 8 AM as well as at 8 PM. Exercise was performed at 11 AM, and heart rate and blood pressure were measured at rest and after 10 min of exercise. Urine was collected between 10 AM and 6 PM, as well as between 10 PM and 6 AM, and the amounts of urinary 6-hydroxy-melatonin sulfate (aMT6s) were determined by RIA. Compared to placebo, (R)-carvedilol increased heart rate during exercise (+4%, P < 0.05) and recovery (+10%, P < 0.05); (S)-carvedilol decreased heart rate during exercise (-14%, P < 0.05) and recovery (-6%, P < 0.05), and systolic blood pressure during exercise (-12%, P < 0.05); (R,S)-carvedilol decreased heart rate during exercise (-11%, P < 0.05), and systolic blood pressure at rest (-7%, P < 0.05) and during exercise (-10%, P < 0.05). None of the agents had any significant effect on the release of aMT6s. Our results indicate that only (S)-carvedilol causes beta-blockade, whereas (R)-carvedilol appears to increase sympathetic tone, presumably as a physiological reaction to the decrease of blood pressure caused by alpha-blockade. None of the drugs had any influence on melatonin release. The weak clinical net effect of beta-blockade of (R,S)-carvedilol at rest might be one reason why this drug causes fewer side effects than other beta-blockers, such as a reduction of nocturnal melatonin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号